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ABSTRACT 

Tuberculosis (TB) unfolds within a chemically reactive battlefield where host-derived reactive oxygen and nitrogen 
species (ROS/RNS) intersect with immune signaling to shape disease outcomes. While oxidative stress is essential 
for mycobacterial control, sustained redox imbalance damages host tissues, disrupts granuloma integrity, fuels 
inflammation, and may even enhance Mycobacterium tuberculosis (Mtb) persistence. This review synthesizes 
current understanding of redox–immune crosstalk in TB pathogenesis and critically evaluates antioxidant 

phytochemicals as host-directed therapy (HDT) candidates. We outline how key pathways-Nrf2/Keap1, NF-κB, 

HIF-1α, MAPK, and JAK/STAT-integrate redox signals to calibrate macrophage activation, autophagy, antigen 
presentation, and adaptive immunity. We then survey major phytochemical classes (polyphenols, terpenoids, 
organosulfur compounds, alkaloids) with reported effects on ROS/RNS homeostasis, inflammasome activity, 
mitochondrial function, and immunometabolism. Emerging data suggest that select compounds can (i) enhance 
bactericidal mechanisms without exacerbating tissue injury, (ii) temper pathological inflammation, (iii) promote 
autophagy and phagosome maturation, and (iv) mitigate anti-TB drug toxicities. We highlight formulation advances 
that improve bioavailability, summarize preclinical/early clinical signals, and discuss safety, pharmacokinetic, and 
drug–drug interaction considerations. Finally, we identify knowledge gaps and propose a translational roadmap for 
integrating rigorously characterized phytochemicals into TB HDT regimens. 
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INTRODUCTION 

TB remains a leading infectious killer [1]. Control of Mtb depends on a delicately balanced inflammatory response: 
enough oxidative and nitrosative pressure to restrict bacilli, but not so much that it drives immunopathology and 
cavitary disease [2]. Oxidative stress-classically attributed to NADPH oxidase-derived superoxide, inducible nitric 
oxide synthase (iNOS)-derived NO, and downstream radicals-interacts with cytokine networks, metabolism, and 
cell death programs [3]. Mtb exploits this terrain with robust antioxidant defenses, redox-sensing transcriptional 
programs, and strategies that subvert phagolysosomal killing. Host-directed strategies that recalibrate (rather than 
blunt) redox tone are therefore attractive adjuncts to standard chemotherapy, particularly for drug-resistant TB and 
patients with inflammatory comorbidities [4]. 
Oxidative Stress in TB Pathogenesis 
Early innate phase. Upon encountering Mycobacterium tuberculosis, alveolar macrophages internalize bacilli and 
rapidly assemble the NOX2 complex, producing superoxide that dismutates to hydrogen peroxide [5]. Inducible 
nitric oxide synthase generates nitric oxide, which reacts with superoxide to form peroxynitrite capable of damaging 
bacterial proteins, lipids, and DNA [6]. These oxidants also signal for cytokine production and phagosome 
maturation. Yet an unchecked neutrophil influx amplifies extracellular ROS, degrading matrix, exposing new tissue 
niches, and propagating necrotic cell death that can favor bacillary spread [7]. 
Granuloma dynamics. Granulomas constrain infection but are redox-mosaic structures [8]. Hypoxia and ongoing 
NADPH oxidase activity elevate ROS, while lipid-laden foamy macrophages exhibit mitochondrial dysfunction, 

impaired β-oxidation, and heightened oxidative tone [9]. Persistent ROS/RNS oxidize lipids and proteins, yielding 
damage-associated molecular patterns that reinforce chemokine gradients and recruit additional neutrophils [10]. 
Oxidative injury stiffens the collagenous capsule, impairs vascular supply, and promotes caseation, all of which 
hinder antibiotic penetration and create sanctuaries for persisting organisms [11]. 
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Systemic consequences. Chronic redox stress perturbs iron and zinc handling, disrupts epithelial barrier function, 
and skews antigen processing, diminishing T-cell priming and effector quality [12]. When unrestrained, this 
imbalance converts protective inflammation into tissue-destructive pathology. 
Antioxidant Phytochemicals: Classes and Canonical Actions 
Polyphenols (flavonoids and phenolic acids). Quercetin, epigallocatechin gallate, curcumin, resveratrol, and baicalin 

commonly activate Nrf2, dampen NF-κB signaling, modulate MAPKs, scavenge radicals, and promote autophagy 
and mitophagy [13]. Limited direct antimycobacterial activity is reported in vitro; their chief value lies in redox and 
inflammatory recalibration. 
Terpenoids. Carotenoids, monoterpenes such as carvacrol, and triterpenoids including oleanolic and ursolic acids 
stabilize membranes, modulate ROS generation, and in some models enhance macrophage bactericidal pathways or 
inhibit efflux pumps, supporting host-directed activity [14]. 
Organosulfur compounds. Allicin and related thiosulfinates exert redox-active sulfur chemistry that can disrupt 
microbial thiol homeostasis while upregulating host antioxidant defenses, thereby lowering damaging oxidative 
tone without abolishing antimicrobial signaling [15]. 

Alkaloids. Berberine and piperine influence AMPK and NF-κB axes, stimulate autophagy, and fortify epithelial 
barriers [16]. Piperine also increases oral bioavailability of co-administered agents, a practical advantage for 
combination phytochemical strategies [17]. 
Others. Lignans such as silymarin/silibinin and selected coumarins provide hepatoprotective antioxidant effects 
with potential to mitigate isoniazid- and rifampicin-associated liver injury, enabling sustained chemotherapy while 
restraining collateral oxidative damage [18].  
Mechanistic Interfaces with TB Immunobiology 
Tuning ROS/RNS without immunoparesis. The aim is to narrow the oxidative “aperture,” not close it. Mild 
activation of Nrf2 boosts glutathione synthesis, HO-1, and phase II detoxification, buffering host tissues while 
leaving NOX2- and iNOS-driven antimycobacterial mechanisms intact [19]. Temporal control matters: early 
containment benefits from preserved oxidants; later, Nrf2 help curbs destructive neutrophil-driven damage [20]. 
Autophagy enhancement. Curcumin, resveratrol, and berberine engage AMPK and inhibit mTOR, activating 
ULK1 and Beclin-1 to promote autophagy and mitophagy [21]. This improves phagosome–lysosome fusion, 
delivers antimicrobial peptides, and clears damaged mitochondria that otherwise leak ROS and DAMPs, improving 
intracellular control of Mtb. 
Inflammasome calibration. Polyphenols modulate NLRP3 priming and activation by reducing mitochondrial ROS 

and preserving potassium homeostasis. The result is restrained IL-1β and IL-18 release that maintains antimicrobial 
tone while avoiding pyroptosis-driven tissue injury and neutrophil hyper-recruitment [22]. 

Immunometabolism. By nudging the AMPK–mTOR–HIF-1α axis, phytochemicals rebalance glycolysis and 
oxidative phosphorylation in macrophages and T cells [23]. This supports bactericidal functions such as nitric oxide 
production while preventing the pathological, lactate-heavy state that fuels chronic inflammation and granuloma 
breakdown. 

Mitochondrial quality control. Agents that induce PGC-1α and mitophagy enhance biogenesis of healthy 
mitochondria, restore membrane potential, and limit release of cardiolipin and mitochondrial DNA that amplify 
inflammation [24]. Better mitochondrial fitness sustains macrophage endurance during prolonged infection. 
Barrier and microbiome effects. Certain compounds strengthen epithelial tight junctions, reduce mucosal 
oxidative injury, and may shift gut microbial metabolites toward short-chain fatty acids that promote regulatory yet 
competent lung immunity [25]. The gut–lung axis is emerging as a lever to tune TB inflammation [26]. 
Evidence Landscape 
In vitro macrophage systems consistently show that curcumin, resveratrol, quercetin, epigallocatechin gallate, and 
berberine reduce lipid peroxidation, restore glutathione, and enhance phagolysosomal maturation, yielding modest 

decreases in intracellular Mtb [27]. These effects track with Nrf2 induction, NF-κB attenuation, and AMPK 
activation. Murine models extend these findings: adjunct phytochemicals can shrink lesion size, lower bacterial 
burden, and limit caseation while improving hepatic histology during isoniazid and rifampicin exposure [28]; 
silymarin is notably hepatoprotective [29]. However, dosing ranges, extract standardization, and formulation 
strategies vary widely, complicating comparisons. 
Human data remain sparse and heterogeneous. Small, short-duration adjunct studies report improvements in 
oxidative stress biomarkers such as malondialdehyde and reduced glutathione, stabilization of liver enzymes, and 
better symptom scores, but effects on time to culture conversion, radiographic healing, relapse, and mortality are 
not yet definitive. Overall, the translational signal is one of biological plausibility with promising surrogate 
outcomes, pending rigorously powered, biomarker-stratified trials using standardized preparations and validated 
pharmacokinetics. 
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Formulation and Pharmacokinetics 
Many phytochemicals are highly lipophilic, chemically labile, and subject to rapid phase II conjugation, yielding low 
and variable oral bioavailability [30]. Nanoformulations such as liposomes, solid lipid nanoparticles, nanoemulsions, 
polymeric micelles, and cyclodextrin inclusion complexes improve apparent solubility, protect against degradation, 
and prolong circulation [31]. Ligand-decorated carriers (for example, mannose or Fc fragments) can exploit 
macrophage receptors to enrich drug within granulomas, while pH- or ROS-responsive polymers trigger release in 
acidic, oxidant-rich lesion cores [32]. Co-loaded systems that pair a phytochemical with isoniazid or rifampicin may 
harmonize intralesional exposure and reduce dosing complexity [33]. Phospholipid complexes (phytosomes) and 
amorphous solid dispersions increase Cmax and AUC by enhancing membrane permeability and reducing 
crystallinity; salt forms, prodrugs, and cocrystals are complementary tools that tune lipophilicity and metabolic 
stability [34]. Adjuvants like piperine or quercetin analogs can attenuate first-pass metabolism and efflux, but their 
own interaction liabilities require careful selection [35]. 
Pulmonary delivery is especially attractive for tuberculosis. Inhalable dry powders and nebulized 
nanosuspensions concentrate actives in the bronchial tree and alveoli, limit systemic exposure, and may achieve 
therapeutic levels in caseous material that oral dosing poorly reaches [36]. Mucus-penetrating particles and 
ultrafine aerosols improve epithelial translocation and macrophage uptake [37]. For any platform, pharmacokinetic 
endpoints should include plasma and epithelial lining fluid concentrations, lesion and caseum penetration, 
intracellular macrophage levels, and half-life within lung tissue. Food effects, protein binding, and enterohepatic 
recycling can meaningfully shift exposure; population PK that accounts for cachexia, HIV co-infection, and diabetes 
is essential before moving to dose-ranging trials. 
Drug–Drug Interactions (DDIs) and Safety 
Polyphenols and related compounds variably modulate CYP1A2, 2C9, 2C19, 2D6, and 3A4, as well as UGTs and 
transporters such as P-gp and BCRP [38]. Rifampicin is a strong inducer of 3A and several transporters, potentially 
lowering phytochemical exposure [39]; conversely, phytochemical inhibition of CYPs or P-gp could alter levels of 
isoniazid, bedaquiline, linezolid, clofazimine, or azoles [40]. Thorough DDI screening and staggered dosing plans 
are prudent. Silymarin and related lignans may mitigate drug-induced liver injury, but perceived protection can 
delay recognition of rising aminotransferases; routine monitoring of ALT, AST, bilirubin, and clinical symptoms 

remains mandatory [41]. Excessive suppression of NF-κB or ROS risks blunting bactericidal immunity; timing and 
dose should favor tissue protection without compromising early antimicrobial signaling. Comorbidities shape safety 
and efficacy: malnutrition alters protein binding [42]; diabetes and HIV change redox tone and enzyme expression 
[43]; antiretroviral regimens introduce additional CYP and transporter interactions. Genetic variability in NAT2, 
GST, and Nrf2 pathways may further stratify responders [44]. Finally, quality control matters: standardized 
extracts, contaminant testing for heavy metals and mycotoxins, and clear labeling of active content are 
nonnegotiable for clinical translation, especially in pregnancy or hepatic disease where safety margins are narrow 
[45, 46]. 

CONCLUSION 
TB pathogenesis is inseparable from redox biology. The same oxidants that help control Mtb can, when 
dysregulated, drive lung destruction and favor bacterial persistence. Antioxidant phytochemicals offer a nuanced 
means to recalibrate this landscape by activating cytoprotective programs (Nrf2), fine-tuning inflammatory 

signaling (NF-κB/MAPK), supporting autophagy, and preserving mitochondrial function—while potentially 
mitigating drug toxicities. The promise is real but conditional: standardized compounds, targeted delivery, 
biomarker-guided selection, and rigorous clinical trials are essential to translate biochemical plausibility into durable 
patient benefit. As part of a broader HDT strategy, well-characterized phytochemicals could help tip the redox–
immune balance toward bacterial clearance with less collateral damage. 
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