

Antioxidant Therapeutics as a Dual Strategy Against Anaemia and Oxidative Stress in Metabolic Disorders

Bizimana Rukundo T.

Faculty of Biological Sciences Kampala International University Uganda

ABSTRACT

Anaemia and oxidative stress are frequently comorbid in metabolic disorders such as type 2 diabetes mellitus, obesity, metabolic syndrome, and chronic kidney disease. The two processes are bi-directionally linked: oxidative stress perturbs iron handling, erythropoiesis, and red blood cell (RBC) lifespan, while anaemia exacerbates tissue hypoxia and generates further reactive oxygen and nitrogen species (ROS/RNS). This interplay contributes to inflammation, organ dysfunction, reduced exercise capacity, and worsened clinical outcomes. Antioxidant therapeutics-ranging from endogenous pathway activators and mitochondria-targeted compounds to nutraceuticals and adjunctive agents used with iron or erythropoiesis-stimulating therapies-offer a promising dual strategy to simultaneously mitigate oxidative damage and improve hematologic status. This review synthesizes current mechanistic understanding of the anaemia-oxidative stress axis in metabolic disease, evaluates classes of antioxidant interventions with preclinical and clinical evidence, discusses biomarker-guided use and safety considerations, and outlines research priorities to translate antioxidant strategies into improved patient outcomes.

Keywords: Anaemia, oxidative stress, metabolic disorders, antioxidants, erythropoiesis

INTRODUCTION

Metabolic disorders encompass a spectrum of conditions-including type 2 diabetes mellitus, obesity, metabolic syndrome, and chronic kidney disease, characterized by chronic low-grade inflammation, insulin resistance, lipid dysregulation, and progressive organ impairment [1-5]. These disorders not only disrupt glucose and lipid metabolism but also influence hematologic homeostasis, leading to a high prevalence of anaemia [6-9]. Anaemia in metabolic diseases is often under-recognized, yet it significantly contributes to fatigue, reduced exercise capacity, cognitive decline, and worsened cardiovascular and renal outcomes. Its etiology is multifactorial, arising from inflammation-driven iron sequestration, diminished erythropoietin (EPO) synthesis, impaired erythroid progenitor function, nutrient deficiencies (iron, vitamin B₁₂, folate), and shortened red blood cell (RBC) lifespan due to oxidative and inflammatory injury [10]. Parallel to these hematologic changes, oxidative stress plays a central pathogenic role in metabolic dysfunction. Oxidative stress results from an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and the body's antioxidant defenses, leading to damage of lipids, proteins, and nucleic acids [11-14]. In metabolic disorders, excess ROS arises from hyperglycaemia, mitochondrial overload, advanced glycation end products (AGEs), and chronic inflammation [15-17]. The resulting oxidative environment exacerbates insulin resistance, endothelial dysfunction, and cellular apoptosis-core events driving disease progression. Importantly, anaemia and oxidative stress are tightly interlinked and mutually reinforcing. Oxidative stress impairs erythropoiesis and damages RBCs, while anaemia-induced hypoxia promotes further ROS generation through mitochondrial and enzymatic pathways [18-21]. Both processes share common molecular drivers, including chronic inflammation, mitochondrial dysfunction, iron dysregulation, and impaired antioxidant defense systems [22-26]. This bidirectional relationship contributes to a self-perpetuating cycle of tissue injury, hypoxia, and metabolic deterioration. Therapeutically, this interconnection provides an opportunity for integrated management strategies. Interventions that target oxidative stress may not only alleviate redox imbalance but also improve erythropoietic function and iron bioavailability. Antioxidant therapeutics-encompassing pharmacologic agents, natural compounds, and lifestyle measures, have emerged as potential dual-action interventions capable of addressing both anaemia and oxidative stress in metabolic diseases [27-32]. Understanding the mechanistic underpinnings of this relationship is therefore essential for developing comprehensive and effective therapies. This review explores the molecular and

physiological links between oxidative stress and anaemia in metabolic disorders, evaluates emerging antioxidant therapeutic strategies, and discusses their translational potential. By examining both preclinical and clinical evidence, the paper highlights how redox modulation could enhance erythropoiesis, protect RBC integrity, and mitigate systemic oxidative injury. Ultimately, such approaches may improve metabolic homeostasis and patient outcomes through the dual targeting of oxidative stress and hematologic dysfunction [33-37].

2. Pathophysiologic Links Between Anaemia and Oxidative Stress

The interaction between oxidative stress and anaemia in metabolic disorders involves multiple, overlapping mechanisms that impair erythropoiesis, disrupt iron handling, and damage circulating erythrocytes.

Iron Dysregulation and Hepcidin: Chronic inflammation, a hallmark of metabolic disease, induces hepatic production of hepcidin peptide that binds and degrades the iron exporter ferroportin [38-43]. This leads to sequestration of iron within macrophages and enterocytes, restricting its availability for hemoglobin synthesis. The resultant functional iron deficiency causes anaemia of chronic disease while simultaneously promoting ROS formation via Fenton reactions from labile intracellular iron [43-46]. The generated hydroxyl radicals inflict oxidative injury on erythroid precursors and mature RBCs, further compounding anaemia [47-50].

Erythropoietic Impairment: Excessive ROS disrupts bone marrow microenvironments by damaging stromal and progenitor cells [51-53]. Key transcription factors involved in erythroid differentiation, such as GATA-1 and NF-E2, are sensitive to redox status, and their dysfunction under oxidative conditions impairs EPO responsiveness [54-57]. Consequently, erythroid progenitor proliferation and maturation decline, reducing red cell output. **Decreased RBC Lifespan:** RBC membranes are rich in polyunsaturated fatty acids, making them particularly vulnerable to lipid peroxidation [59]. Oxidative modification of membrane proteins such as spectrin and band 3 alters RBC deformability and increases susceptibility to splenic clearance [60-63]. Thus, RBC turnover accelerates even when erythropoiesis remains adequate. **Mitochondrial Dysfunction:** In metabolic disorders, mitochondrial overproduction of superoxide and hydrogen peroxide drives systemic oxidative stress [64-69]. Within erythroid precursors, defective mitochondrial function impairs heme biosynthesis and ATP production, leading to ineffective erythropoiesis and anemia [70-74]. **Inflammation and Nitrosative Stress:** Pro-inflammatory cytokines (e.g., IL-6, TNF- α) induce inducible nitric oxide synthase (iNOS), generating RNS that nitrosylate proteins involved in iron metabolism and erythropoietin signaling [75-78]. This nitrosative damage further compromises erythropoietic processes. Collectively, these mechanisms form a vicious cycle in which anaemia-induced hypoxia amplifies oxidative stress via xanthine oxidase activation and mitochondrial uncoupling—while oxidative stress perpetuates anaemia through iron mismanagement, progenitor toxicity, and RBC damage. Understanding this interplay forms the foundation for antioxidant-based therapeutic interventions in metabolic disorders.

3. Rationale for Antioxidant Therapeutics

Oxidative stress serves as both a cause and a consequence of anaemia in metabolic disorders, forming a reinforcing cycle that worsens tissue hypoxia, inflammation, and metabolic dysfunction [79-81]. Therapeutic approaches that address oxidative imbalance can potentially disrupt this cycle and restore normal erythropoietic and metabolic function. Antioxidants hold promise as dual-acting agents that not only mitigate redox-driven cellular injury but also enhance hematologic recovery [80-83].

The rationale for antioxidant intervention rests on several interconnected mechanisms. First, antioxidants can directly lower ROS- and RNS-mediated damage to erythroid progenitors and red blood cell (RBC) membranes, thereby improving both RBC production and survival [19]. By stabilizing cellular membranes and preventing lipid peroxidation, antioxidants help maintain RBC deformability and reduce premature destruction in the spleen. Second, antioxidants preserve mitochondrial function—a critical determinant of heme biosynthesis and ATP generation necessary for erythropoiesis [20]. Enhanced mitochondrial efficiency supports the differentiation of erythroid precursors and limits the formation of dysfunctional, short-lived RBCs.

Furthermore, antioxidant compounds can modulate inflammatory signaling pathways that elevate hepcidin, the master regulator of systemic iron homeostasis. By attenuating pro-inflammatory cytokine activity, antioxidants may decrease hepcidin expression, thereby improving intestinal iron absorption and mobilization from macrophage stores [21]. This mechanism directly counteracts the functional iron deficiency seen in anaemia of chronic disease. Another rationale lies in the ability of antioxidants to complement established therapies such as iron supplementation and erythropoiesis-stimulating agents (ESAs) [22]. By reducing oxidative side effects associated with iron therapy and improving responsiveness to erythropoietin, antioxidants can enhance treatment efficacy and reduce required dosages [23]. Collectively, these effects position antioxidant therapy as a promising adjunct or, in some cases, a primary modality in managing anaemia within metabolic disorders.

4. Classes of Antioxidant Interventions

4.1 Endogenous Pathway Activators (Nrf2 and Related Targets)

Activation of endogenous antioxidant systems represents a central therapeutic strategy. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway regulates genes encoding detoxifying enzymes and antioxidant proteins such as glutathione peroxidase, heme oxygenase-1, and NAD(P)H quinone oxidoreductase [24]. Phytochemicals,

including sulforaphane, curcumin, and resveratrol, are natural Nrf2 activators that enhance cellular resilience against oxidative injury [25]. In erythroid tissues, Nrf2 activation promotes redox balance, protects progenitor cells from apoptosis, and suppresses inflammation-driven hepcidin elevation [26]. This dual action supports both erythropoiesis and iron mobilization.

4.2 Thiol Donors and Glutathione Precursors

N-acetylcysteine (NAC) and similar thiol-based agents act as glutathione precursors, replenishing intracellular antioxidant pools. By restoring reduced glutathione (GSH) levels, these agents improve redox buffering and neutralize free radicals [26]. In experimental models of anaemia and oxidative stress, NAC reduces hemolysis, stabilizes RBC membranes, and enhances mitochondrial function [27]. Early clinical studies suggest potential benefits in metabolic and inflammatory diseases, though large-scale trials are still needed to confirm their therapeutic impact [28].

4.3 Mitochondria-Targeted Antioxidants

Because mitochondria are major sources of ROS generation, targeted delivery of antioxidants to these organelles offers a direct means of redox control. Mitochondria-targeted antioxidants, such as mitoQ, mitoTEMPO, and SS-31 peptides, accumulate in mitochondrial membranes via lipophilic cations [29]. These compounds reduce superoxide formation, preserve respiratory chain integrity, and support heme synthesis. Improved mitochondrial function enhances erythroid cell metabolism and may alleviate anaemia associated with metabolic dysfunction or mitochondrial disease.

4.4 Polyphenols and Nutraceuticals

Naturally occurring polyphenols—including resveratrol, quercetin, epigallocatechin gallate (EGCG), and curcumin—have demonstrated strong antioxidant, anti-inflammatory, and iron-modulatory properties [30]. They scavenge ROS, inhibit pro-oxidant enzymes, and suppress hepcidin synthesis, thereby facilitating iron release and utilization. Polyphenols also enhance endothelial and mitochondrial health, providing systemic benefits beyond erythropoiesis [31]. Despite promising preclinical data, variability in bioavailability and dosage standardization remains a limitation for consistent clinical outcomes.

4.5 Iron Formulations with Redox-Sparing Properties

Traditional iron therapy can transiently increase oxidative stress due to the catalytic nature of free iron in Fenton chemistry [32]. Novel formulations, such as ferric carboxymaltose, iron isomaltoside, and liposomal iron, aim to minimize labile iron release while maintaining efficient iron delivery [33]. When combined with antioxidants like vitamin C in controlled doses, these formulations improve iron utilization while preventing excessive ROS formation [34]. Such redox-sparing strategies may enhance treatment safety and efficacy in anaemic patients with metabolic disease.

4.6 Combination with Erythropoiesis-Stimulating Agents (ESA)

Erythropoiesis-stimulating agents (e.g., recombinant EPO) are widely used in anaemia management, particularly in chronic kidney disease. However, oxidative and inflammatory stress can blunt ESA responsiveness [35]. Antioxidants may protect erythroid precursors from ROS-mediated apoptosis and restore sensitivity to EPO signaling [36]. This synergy allows for lower ESA dosages, reducing associated risks such as hypertension and thromboembolic events. In summary, antioxidant therapeutics encompass diverse molecular classes that target oxidative stress at multiple levels—mitochondrial, cytosolic, and systemic. By restoring redox balance, preserving iron metabolism, and supporting erythroid cell integrity, these agents hold significant potential for mitigating both anaemia and oxidative injury in metabolic disorders.

CONCLUSION

Anaemia and oxidative stress are entwined contributors to morbidity in metabolic disorders. Antioxidant therapeutics—applied thoughtfully and guided by biomarkers—offer a compelling dual strategy to reduce oxidative injury and support erythropoiesis. While preclinical evidence is strong, translation into routine clinical practice requires rigorously designed trials, precision in patient selection, and attention to safety. Integrating antioxidant approaches with established treatments for iron deficiency and inflammation has the potential to improve hematologic outcomes and overall patient health in metabolic disease.

REFERENCES

1. Swarup S, Ahmed I, Grigorova Y, Zeltser R. Metabolic syndrome. StatPearls - NCBI Bookshelf. 2024. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK459248/>
2. Timerga A, Haile K, Dessu S. Anemia and associated factors among patients admitted with metabolic syndromes at Worabe Comprehensive Specialized Hospital, Southern Ethiopia: A cross-sectional study. PLoS ONE. 2022;17(4):e0266089. doi:10.1371/journal.pone.0266089
3. Alum, E.U., Uti, D.E. & Offor, C.E. Redox Signaling Disruption and Antioxidants in Toxicology: From Precision Therapy to Potential Hazards. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01846-8>

4. Godfrey Ogochukwu Ezema, Ndukaku Yusuf Omeh, Egba Simeon Ikechukwu, Ejiofor C Agbo, Adachukwu Ada Ikeyiand Emmanuel Ifeanyi Obeagu. Evaluation of Biochemical Parameters of Patients with Type 2 Diabetes Mellitus Based on Age and Gender in Umuahia (2023) Asian Journal of Dental and Health Sciences 2023; 3(2):32-36
5. Obeagu EI, Igwe MC, Obeagu GU. Oxidative stress's impact on red blood cells: Unveiling implications for health and disease. Medicine. 2024;103(9):e37360. doi:10.1097/md.00000000000037360
6. Ochulor Okechukwu C., Njoku Obioma U., Uroko Robert I and Egba Simeon I. Nutritional composition of *Jatropha tanjorensis* leaves and effects of its aqueous extract on carbon tetrachloride induced oxidative stress in male Wistar albino rats. Biomedical Research 2018; 29(19): 3569-3576
7. Collins JF, Wessling-Resnick M, Knutson MD. Hepcidin Regulation of iron transport. Journal of Nutrition. 2008;138(11):2284-8. doi:10.3945/jn.108.096347
8. Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants. 2023;12(4):918. doi:10.3390/antiox12040918
9. Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, et al. Oxidative stress in healthy and pathological red blood cells. Biomolecules. 2023;13(8):1262. doi:10.3390/biom13081262
10. Mangialardi G, Spinetti G, Reni C, Madeddu P. Reactive oxygen species adversely impacts bone marrow microenvironment in diabetes. Antioxidants and Redox Signaling. 2014;21(11):1620-33. doi:10.1089/ars.2014.5944
11. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxidants and Redox Signaling. 2008;10(11):1923-40. doi:10.1089/ars.2008.2142
12. Uhuo E N, Egba S I, Nwuke P C, Obike C A and Kelechi G K. Antioxidative properties of Adansonia digitata L. (baobab) leaf extract exert protective effect on doxorubicin induced cardiac toxicity in Wistar rats. Clinical Nutrition Open Science 2022; 45:3-16
13. Asaro RJ, Cabrales P. The RBC's road to ghost and removal: splenic clearance. Blood Advances. 2021;5(21):4422-5. doi:10.1182/bloodadvances.2021005194
14. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease. 2016;1863(5):1066-77. doi:10.1016/j.bbadi.2016.11.010
15. Dailey HA, Meissner PN. Erythroid heme Biosynthesis and its Disorders. Cold Spring Harbor Perspectives in Medicine. 2013;3(4):a011676. doi:10.1101/cshperspect.a011676
16. Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immunopathogenesis of inflammatory bowel diseases. World Journal of Gastrointestinal Pharmacology and Therapeutics. 2016;7(3):353. doi:10.4292/wjgpt.v7.i3.353
17. Manzoor MF, Arif Z, Kabir A, Mehmood I, Munir D, Razzaq A, et al. Oxidative stress and metabolic diseases: Relevance and therapeutic strategies. Frontiers in Nutrition. 2022;9. doi:10.3389/fnut.2022.994309
18. Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, et al. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomedicine & Pharmacotherapy. 2024;178:117177. doi:10.1016/j.bioph.2024.117177
19. Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, et al. Oxidative stress in healthy and pathological red blood cells. Biomolecules. 2023;13(8):1262. doi:10.3390/biom13081262
20. Imam M, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9(7):671. doi:10.3390/nu9070671
21. Imam M, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9(7):671. doi:10.3390/nu9070671
22. Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR. Oxidative Stress in Hemodialysis patients: A Review of the literature. Oxidative Medicine and Cellular Longevity. 2017;2017(1). doi:10.1155/2017/3081856
23. Imam M, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9(7):671. doi:10.3390/nu9070671
24. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Progress in Neurobiology. 2012;100:30-47. doi:10.1016/j.pneurobio.2012.09.003
25. Alum, E.U. Unlocking the Secrets of Nature: Phytochemicals as Key Players in Longevity and Healthy Aging. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01872-6>
26. Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: from bench to bedside. Redox Biology. 2025;81:103551. doi:10.1016/j.redox.2025.103551
27. Tenório MCDS, Graciliano NG, Moura FA, De Oliveira ACM, Goulart MOF. N-Acetylcysteine (NAC): Impacts on human health. Antioxidants. 2021;10(6):967. doi:10.3390/antiox10060967

28. Muvhulawa N, Dladla PV, Ndlovu M, Ntamo Y, Mayeye A, Luphondo N, et al. Global trends in clinical trials and interventions for the metabolic Syndrome: A comprehensive analysis of the WHO International Clinical Trials Platform. *Contemporary Clinical Trials Communications*. 2024;40:101330. doi:10.1016/j.concctc.2024.101330

29. Jiang Q, Yin J, Chen J, Ma X, Wu M, Liu G, et al. Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. *Oxidative Medicine and Cellular Longevity*. 2020;2020:1-18. doi:10.1155/2020/8837893

30. Alum EU, Uti DE, Egba SI, Ugwu OP-C, Aja PM. The Role of Phytochemicals in Age-Related Cognitive Decline: A Natural Solution for Brain Health. *Natural Product Communications*. 2025;20(6). doi:10.1177/1934578X251350761

31. Akwari, A.A., Okoroh, P.N., Aniokete, U.C., Abba, J.N. Phytochemicals as modulators of ferroptosis: a novel therapeutic avenue in cancer and neurodegeneration. *Mol Biol Rep* 52, 636 (2025). <https://doi.org/10.1007/s11033-025-10752-4>

32. Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. *Aging Medicine*. 2019;2(2):82-7. doi:10.1002/agm2.12074

33. Toblli J, Angerosa M. Optimizing iron delivery in the management of anemia: patient considerations and the role of ferric carboxymaltose. *Drug Design Development and Therapy*. 2014;2475. doi:10.2147/dddt.s55499

34. Poljsak B, Šuput D, Milišav I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. *Oxidative Medicine and Cellular Longevity*. 2013;2013:1-11. doi:10.1155/2013/9567926

35. Palmer SC, Saglimbene V, Mavridis D, Salanti G, Craig JC, Tonelli M, et al. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. *Cochrane Library*. 2014. doi:10.1002/14651858.cd010590.pub2

36. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive Oxygen Species-Induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. *Oxidative Medicine and Cellular Longevity*. 2019;2019:1-13. doi:10.1155/2019/5080843

37. Isaac Edyedu PMA, Ugwu OPC, Ugwu CN, Alum EU, et al. The role of pharmacological interventions in managing urological complications during pregnancy and childbirth: A review. *Medicine*. 2025;104(7):e41381.

38. Alum EU, Ugwu OPC, Obeagu EI, et al. Nutritional care in diabetes mellitus: A comprehensive guide. *Int J Innov Appl Res*. 2023;11(12):16-25.

39. Obeagu EI, Ahmed YA, Obeagu GU, Bunu UO, Ugwu OPC, Alum EU. Biomarkers of breast cancer: Overview. *Int J Curr Res Biol Med*. 2023;1:8-16.

40. Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, et al. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: Advances in targeted delivery and precision therapeutics. *J Nanobiotechnol*. 2025;23:336.

41. Ugwu CN, Ugwu OPC, Alum EU, Eze VH, Basajja M, Ugwu JN, Ogenyi FC, et al. Medical preparedness for bioterrorism and chemical warfare: A public health integration review. *Medicine*. 2025;104(18):e42289.

42. Obeagu EI, Scott GY, Amekpor F, Ugwu OPC, Alum EU. COVID-19 infection and diabetes: A current issue. *Int J Innov Appl Res*. 2023;11(1):25-30.

43. Offor CE, Ugwu OPC, Alum EU. Anti-diabetic effect of ethanol leaf extract of *Allium sativum* on albino rats. *Int J Pharm Med Sci*. 2014;4(1):1-3.

44. Asogwa FC, Okechukwu PCU, Esther UA, Chinedu OE, Nzubechukwu E. Hygienic and sanitary assessment of street food vendors in selected towns of Enugu North District, Nigeria. *Am-Eurasian J Sci Res*. 2015;10(1):22-26.

45. Alum EU, Uti DE, Agah VM, Orji OU, Nkeiru N, et al. Physico-chemical and bacteriological analysis of water used for drinking and domestic purposes in Amaozara Ozizza, Afikpo North, Nigeria. *Niger J Biochem Mol Biol*. 2023;38(1):1-8.

46. Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: Implications for health, disease, and therapeutic interventions. *Medicine*. 2024;103(19):e38088.

47. Ezekwe CI, Uzomba CR, Ugwu OPC. Effect of methanol extract of *Talinum triangulare* on hematology and liver parameters in rats. *Glob J Biotechnol Biochem*. 2013;8(2):51-60.

48. Alum EU, Inya JE, Ugwu OPC, Obeagu EI, Aloke C, Aja PM, Okpata MG, et al. Ethanolic leaf extract of *Datura stramonium* attenuates methotrexate-induced biochemical alterations in Wistar rats. *RPS Pharmacol Rep*. 2023;2(1):1-6.

49. Ugwu OPC, Erisa K, Inyangat R, Obeagu EI, et al. Indigenous medicinal plants for managing diabetes in Uganda: Ethnobotanical and pharmacotherapeutic insights. *INOSR Exp Sci*. 2023;12(2):214-224.

50. Alum EU, Aja W, Ugwu OPC. Vitamin composition of ethanol leaf and seed extracts of *Datura stramonium*. *Avicenna J Med Biochem*. 2023;11(1):92-97.

51. Ezenwaji CO, Alum EU, Ugwu OPC. Digital health in pandemic preparedness and response: Securing global health? *Glob Health Action*. 2024;17(1):2419694.

52. Adonu CC, Ugwu OP, Bawa A, Ossai EC, Nwaka AC. Intrinsic blood coagulation studies in patients with diabetes and hypertension. *Int J Pharm Med Bio Sci.* 2013;2(2):36-45.

53. Offor CE, Ugwu PC, Okechukwu PM, Igwenyi IO. Proximate and phytochemical analyses of *Terminalia catappa* leaves. *Eur J Appl Sci.* 2015;7(1):9-11.

54. Enechi YS, Ugwu OC, Ugwu KK, Ugwu OPC, Omeh N. Evaluation of antinutrient levels of *Ceiba pentandra* leaves. *IJRPPAS.* 2013;3(3):394-400.

55. Alum EU, Uti DE, Ugwu OPC, Alum BN, Edeh FO, Ainebyoona C. Microbiota in cancer development and treatment. *Discov Oncol.* 2025;16(1):646.

56. Asogwa FC, Okoye COB, Ugwu OPC, Edwin N, Alum EU, Egwu CO. Phytochemistry and antimicrobial assay of *Jatropha curcas* extracts. *Eur J Appl Sci.* 2015;7(1):12-16.

57. Enechi OC, Oluka HI, Ugwu PCO. Acute toxicity and ameliorative properties of *Alstonia boonei* leaf extract on diabetic rats. *Afr J Biotechnol.* 2014;13(5).

58. Alum EU, Obeagu EI, Ugwu OPC. Enhancing water, sanitation, and hygiene for diarrhoea control and SDGs: A review. *Medicine.* 2024;103(38):e39578.

59. Odo CE, Nwodo OFC, Joshua PE, Ugwu OPC, Okonkwo CC. Anti-diarrhoeal effect of chloroform-methanol extract of *Persea americana* seeds in rats. *J Pharm Res.* 2013;6(3):331-335.

60. Ugwu OPC, Obeagu EI, Alum EU, Michael M, et al. Effect of ethanol leaf extract of *Chromolaena odorata* on hepatic markers in diabetic rats. *IAA J Appl Sci.* 2023;9(1):46-56.

61. Ibiam UA, Alum EU, Orji OU, Aja PM, Nwamaka EN, Ugwu OPC, et al. Anti-inflammatory effects of *Buchholzia coriacea* leaf extract in arthritic rats. *Indo Am J Pharm Sci.* 2018;5(7):6341-6357.

62. Obeagu EI, Obeagu GU, Odo EO, Alum EU. Nutritional approaches for enhancing immune competence in HIV-positive individuals. *IDOSR J Appl Sci.* 2024;9(1):40-50.

63. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: Gatekeeper of iron in malaria resistance. *Newport Int J Res Med Sci.* 2023;4(2):1-8.

64. Nyamboga TO, Ugwu OPC, Ugwu JN, et al. Biotechnological innovations in soil health management: a systematic review of integrating microbiome engineering, bioinformatics, and sustainable practices. *Cogent Food Agric.* 2025;11(1):2519811.

65. Madu ANB, Alum EU, Aloh HE, Ugwu OPC, Obeagu EI, Uti DE, Egba SI, Ukaidi CUA. The price of progress: Assessing the financial costs of HIV/AIDS management in East Africa. *Medicine.* 2025;104(18):e42300.

66. Alum EU, Ugwu OPC. Beyond pregnancy: Understanding long-term implications of gestational diabetes mellitus. *INOSR Sci Res.* 2024;11(1):63-71.

67. Ugwu OPC, Alum EU, Okon MB, Aja PM, Obeagu EI, Onyeneke EC. Anti-nutritional and GC-MS analysis of ethanol root extract and fractions of *Sphenocentrum jollyanum*. *RPS Pharmacol Pharm Rep.* 2023;2(2):rqad007.

68. Eze VH, Eze CE, Mbabazi A, Ugwu CN, Ugwu PO, Ogenyi CF, Ugwu JN, et al. Qualities and characteristics of a good scientific research writing: Step-by-step approaches. *IAA J Appl Sci.* 2023;9(2):71-76.

69. Igwenyi IO, Nchi PO, Okechukwu UPC, Igwenyi IP, Obasi DC, Edwin N. Nutritional potential of *Azadirachta indica* seeds. *Indo Am J Pharm Sci.* 2017;4(2):477-482.

70. Enechi OC, Oluka IH, Ugwu OPC, Omeh YS. Effect of ethanol leaf extract of *Alstonia boonei* on lipid profile of alloxan-induced diabetic rats. *Afr J Biotechnol.* 2013;24.

71. Ugwu OPC. Anti-malaria effect of ethanol extract of *Moringa oleifera* leaves on malaria-induced mice. University of Nigeria Nsukka; 2011:39.

72. Alum EU, Ugwu OPC, Obeagu EI. Nutritional interventions for cervical cancer patients: Beyond conventional therapies. *J Cancer Res Cell Ther.* 2024;8(1):1-6.

73. Obeagu EI, Obeagu GU. Advancements in immune augmentation strategies for HIV patients. *IAA J Biol Sci.* 2024;11(1):1-11.

74. Okechukwu PU, Nzubechukwu E, Ogbanshi ME, Ezeani N, Nworie MO. Effect of ethanol leaf extract of *Jatropha curcas* on chloroform-induced hepatotoxicity in albino rats. *Glob J Biotech Biochem.* 2015;10:11-15.

75. Ilozue NM, Ikezu UP, Okechukwu PCU. Antimicrobial and phytochemical screening of *Persea americana* seed extracts. *IOSR J Pharm Biol Sci.* 2014;9(2):23-25.

76. Onyeze R, Udeh SM, Akachi B, Ugwu OP. Isolation and characterization of fungi associated with spoilage of corn (*Zea mays*). *Int J Pharm Med Biol Sci.* 2013;2(3):86-91.

77. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: The gatekeeper of iron in malaria resistance. *Newport Int J Res Med Sci.* 2023;4:1-8.

78. Obeagu EI, Alum EU, Obeagu GU, Ugwu OPC. Prostate cancer: Review on risk factors. *Eurasian Exp J Public Health.* 2023;4(1):4-7.

79. Offor CE, Okaka ANC, Ogbugo SO, Egwu CO, Okechukwu PC. Effects of ethanol leaf extract of *Pterocarpus santalinoides* on haemoglobin, packed cell volume and platelets. *IOSR J Nurs Health Sci.* 2015;4:108-112, 93.

80. Offor C, Aja PC, Ugwu O, Agbafor KN. Effects of ethanol leaf extract of *Gmelina arborea* on serum proteins in albino rats. *Glob J Environ Res.* 2015;9(1):1-4.
81. Alum EU, Uti DE, Obeagu EI, Ugwu OPC, Alum BN. Cancer's psychosocial aspects: Impact on patient outcomes. *Elite J Med.* 2024;2(6):32-42.
82. Alum EU, Ugwu OPC, Egba SI, Uti DE, Alum BN. Climate variability and malaria transmission: Unravelling the complex relationship. *INOSR Sci Res.* 2024;11(2):16-22.
83. Alum EU, Obeagu EI, Ugwu OPC, Egba SI, EjimUti DE, Ukaidi CUA, et al. Confronting dual challenges: Substance abuse and HIV/AIDS. *Elite J HIV.* 2024;2(5):1-8.

CITE AS: Bizimana Rukundo T. (2026). Antioxidant Therapeutics as a Dual Strategy Against Anaemia and Oxidative Stress in Metabolic Disorders. *IDOSR JOURNAL OF SCIENCE AND TECHNOLOGY* 12(1):27-33.
<https://doi.org/10.59298/IDOSR/JST/26/113.2733>