

Remedies in Diabetes Management: Balancing Efficacy and Toxicological Risks

Mugisha Emmanuel K.

Faculty of Science and Technology Kampala International University Uganda

ABSTRACT

Herbal remedies remain widely used worldwide as adjuncts or alternatives for diabetes management. Many botanicals show promising glucose-lowering, insulin-sensitizing, anti-inflammatory and antioxidant effects in vitro, in animals and in small human trials. However, enthusiasm for phytomedicines is tempered by variable product quality, inconsistent clinical evidence, and growing reports of organ toxicity—particularly herb-induced liver injury (HILI), nephrotoxicity, and, less commonly, neurotoxic or hematologic adverse events. This review synthesizes current evidence on the efficacy of common antidiabetic herbs, highlights mechanisms by which herbs may both help and harm (glycemic modulation, antioxidant action, mitochondrial effects, xenobiotic metabolism), and surveys reported toxicities and their mechanistic bases. We emphasize three practical priorities for clinicians, researchers and policymakers: (1) rigorous clinical evaluation (well-designed RCTs with adequate duration and safety endpoints), (2) pharmacovigilance and pre-market quality controls to detect contaminants/adulterants and ensure dose consistency, and (3) patient-centered risk–benefit communication, particularly for people with hepatic or renal impairment. Finally, we outline research gaps—standardized extracts, herb–drug interaction studies, and shared registries for herbal adverse events—that are essential to safely integrate plant medicines into diabetes care.

Keywords: diabetes, herbal remedies, hepatotoxicity, nephrotoxicity, oxidative stress

INTRODUCTION

Diabetes mellitus remains one of the most prevalent metabolic disorders globally, affecting populations across both developed and developing nations [1-6]. In addition to conventional pharmacotherapy, the use of herbal remedies has become deeply embedded in the management of this chronic disease. The popularity of botanicals is fueled by perceptions of natural safety, affordability, cultural traditions, and in some cases, dissatisfaction with standard medications or health care access [7-9]. In regions where health systems are strained, herbal preparations may also be the first or only therapeutic option available. From a scientific perspective, plants used in traditional medicine contain diverse classes of bioactive phytochemicals such as polyphenols, alkaloids, saponins, and terpenoids [10-13]. These compounds exhibit multiple biological effects, including modulation of insulin secretion, enhancement of glucose uptake, attenuation of oxidative stress, and suppression of low-grade inflammation [14-19]. Their pleiotropic mechanisms make them attractive candidates for addressing the multifactorial nature of diabetes and its complications. Nevertheless, the therapeutic promise of herbal remedies is tempered by several challenges [20-25]. First, variations in plant species, cultivation, harvesting, and processing can result in significant differences in phytochemical composition and potency, even among products labeled as identical [26-29]. Second, the absence of rigorous standardization and quality control increases the risk of adulteration, contamination with heavy metals, or inclusion of undeclared synthetic drugs [30-35]. Third, the same compounds that provide pharmacological activity may also pose risks of hepatotoxicity, nephrotoxicity, or interactions with prescribed medications [36-38]. Thus, the field of herbal diabetes management exists at the interface of efficacy and toxicology. This review aims to critically evaluate contemporary evidence on both sides of this balance. By examining the mechanisms and outcomes associated with frequently studied botanicals, as well as reported toxicities and adverse reactions, the discussion seeks to guide clinicians, researchers, and public health stakeholders toward evidence-based integration of herbal remedies in diabetes care.

2. Common herbs and claimed antidiabetic mechanisms

Several plants have received considerable attention in both preclinical and clinical studies. Cinnamon (*Cinnamomum* species) has been investigated for its potential to enhance insulin signaling pathways, delay gastric emptying, and improve lipid metabolism, though clinical findings remain inconsistent [39-43]. *Gymnema sylvestre*, long used in Ayurvedic practice, is believed to promote insulin secretion and support regeneration of pancreatic β -cells, with encouraging results in animal models [44-49]. Fenugreek (*Trigonella foenum-graecum*) contains soluble fibers and steroidal saponins that slow glucose absorption and improve postprandial glycemic control [11]. Bitter melon (*Momordica charantia*) demonstrates insulin-mimetic properties, activation of AMPK pathways, and regulation of glucose transporters, though human data are still limited [50-56].

Other agents such as turmeric (curcumin), green tea catechins (notably EGCG), and berberine from various medicinal plants have been studied for their antioxidant, anti-inflammatory, and insulin-sensitizing properties [57-63]. These compounds are particularly relevant in addressing oxidative stress, a major contributor to diabetic complications. Beyond these widely recognized herbs, many regional remedies from Chinese, African, and Ayurvedic traditions are under active investigation. It is important to note that single-herb preparations and complex polyherbal formulations often differ markedly in chemical composition, making efficacy and safety outcomes difficult to generalize [64-69].

3. Evidence for efficacy - clinical trials and meta-analyses

The clinical evaluation of herbal remedies in diabetes management has steadily increased, with a number of randomized controlled trials (RCTs) and systematic reviews now available. Most meta-analyses demonstrate small-to-moderate improvements in fasting blood glucose, postprandial glucose, and glycated hemoglobin (HbA1c) among patients using certain phytomedicines [70-76]. These effects are generally greater than placebo but often less robust than those achieved with standard pharmacotherapy such as metformin or sulfonylureas. For example, berberine has been shown in several Chinese trials to reduce HbA1c by 0.5-1.0%, approaching the effect of first-line drugs, although methodological limitations temper confidence in these results [77-79].

Cinnamon has also been widely studied, with meta-analyses reporting modest reductions in fasting glucose but inconsistent changes in HbA1c [17]. The heterogeneity across studies reflects variation in species used, preparation methods (aqueous vs. alcoholic extracts, whole powder vs. capsules), dosages, and participant characteristics. Similarly, fenugreek has demonstrated improvements in postprandial glycemia, though trial sizes are often fewer than 100 participants and follow-up durations rarely exceed three months [18].

Gymnema sylvestre and bitter melon are other botanicals with encouraging preclinical and small clinical trial data. *Gymnema* has been associated with modest reductions in insulin requirements among insulin-dependent patients, while bitter melon has shown glucose-lowering effects in some South Asian studies, although larger Western trials have failed to replicate these findings consistently [19].

More recent network meta-analyses emphasize that while phytomedicines collectively display glycemic benefits, the strength of evidence varies considerably by herb, preparation, and outcome measured. A persistent limitation is the short duration of most studies, which precludes assessment of long-term glycemic durability, complication prevention, or safety outcomes [20]. Furthermore, many studies fail to report adverse events systematically, limiting understanding of risk-benefit balance. In summary, the evidence suggests that select herbs may have an adjunctive role in diabetes management, especially in early disease stages or in populations with limited access to conventional therapies. However, the current data do not justify replacing first-line pharmacotherapy with herbal remedies. Rigorous, long-term RCTs using standardized extracts, clinically meaningful endpoints, and active safety monitoring remain an urgent research priority.

4. Toxicological risks linked to herbal antidiabetic remedies

While herbal remedies may offer metabolic benefits, they also carry important toxicological risks. These risks arise from intrinsic phytochemical toxicity, variability in preparation, contamination or adulteration, and interactions with prescribed antidiabetic drugs [8]. For people with diabetes, who often have comorbid hepatic or renal disease, such risks are amplified.

4.1 Hepatotoxicity (HILI)

Herbal and dietary supplements are increasingly recognized as causes of drug-induced liver injury. Green tea extract, particularly in concentrated high-dose forms, has been repeatedly linked to acute hepatitis [21]. Multi-herbal Ayurvedic formulations and products adulterated with undisclosed pharmaceuticals (such as glibenclamide) are other sources of hepatotoxicity [22]. Mechanistically, injury may result from direct hepatocellular toxicity, immune-mediated reactions, or the formation of reactive metabolites during hepatic biotransformation [23]. In clinical practice, HILI can manifest as asymptomatic enzyme elevations, cholestatic hepatitis, or fulminant liver failure [24]. Diabetic patients with underlying nonalcoholic fatty liver disease are at heightened risk, making pharmacovigilance especially important in this population [25].

4.2 Nephrotoxicity

Renal injury related to herbal use may result from nephrotoxic alkaloids, heavy-metal contamination, or adulteration with NSAIDs and other nephrotoxic agents [26]. Aristolochic acid exposure, although less common today, illustrates the severe consequences of unrecognized nephrotoxic herbs, leading to progressive interstitial fibrosis and end-stage renal disease [27]. For individuals with diabetes, who already have increased susceptibility to nephropathy, even low-level renal insults can accelerate decline in kidney function [28,29]. Unfortunately, renal outcomes are rarely measured in clinical trials of herbal therapies, leaving a gap in safety knowledge.

4.3 Neurotoxicity and hematologic risks

Neurotoxic effects, though less frequently reported, are documented in association with certain alkaloid-rich plants. Mechanisms include mitochondrial dysfunction, oxidative stress, and interference with neurotransmitter pathways [30]. For diabetic patients, existing neuropathy may increase vulnerability to such insults [31]. Hematologic risks such as hemolytic anemia and bone marrow suppression are also described with some botanicals [32]. These may result from direct oxidative injury to erythrocytes, immune-mediated destruction, or interference with hematopoietic precursors. Although uncommon, these adverse events highlight the importance of systematic monitoring in both research and clinical use.

CONCLUSION

Herbal remedies offer biologically plausible mechanisms for improving glycemic control and reducing oxidative-stress-mediated diabetic complications, and some show encouraging clinical signals. However, inconsistent product quality, limited high-quality clinical data and accumulating reports of hepatotoxicity, nephrotoxicity and other adverse effects mandate caution. Safe integration of phytomedicines into diabetes care requires stronger evidence, better manufacturing standards, active pharmacovigilance, and clear clinician–patient communication about risks, especially for people with hepatic or renal impairment. Until robust safety and efficacy data are available for specific standardized products, herbal remedies should be considered adjunctive, not substitutive, to evidence-based antidiabetic therapy [4].

REFERENCES

1. Uti DE, Atangwho IJ, Alum EU, Egba SI, Ugwu OPC, Ikechukwu GC. Natural Antidiabetic Agents: Current Evidence and Development Pathways from Medicinal Plants to Clinical use. *Natural Product Communications*. 2025;20(3). doi:10.1177/1934578X251393393
2. Agu, P. C., Christopher, N. N., Nwiziogo, F. C., Okafor, M. U., *et al.* (2025). Historical and ethnopharmacological perspectives on African medicinal plants: From traditional remedies to computational drug discovery. *Scientific African*, 30, e02941. <https://doi.org/10.1016/j.sciaf.2025.e02941>
3. Uhoo E N, Egba S I, Nwuke P C and Odinamadu H Renoprotective effects of *Adansonia digitata* leaf extracts on renal functions and histopathological changes vancomycin-induced nephrotoxicity in Wistar rats. *Comparative Clinical Pathology*, 2022; 31(1):1-14
4. M.C. Udeh Sylvester, O.F.C. Nwodo, O.E. Yakubu, E.J. Parker, S. Egba, E. Anaduaka, V.S. Tatah, O.P. Ugwu, E.M. Ale, C.M. Ude and T.J. Iornenge. Effects of Methanol Extract of *Gongronema latifolium* Leaves on Glycaemic Responses to Carbohydrate Diets in Streptozotocin-induced Diabetic Rats. *Journal of Biological Sciences*, 2022; 22: 70-79.
5. Alum, E.U., Manjula, V.S., Uti, D.E., Echegu, D.A., Ugwu, O.P.C., Egba, S.I., Agu, P.C. (2025). Metabolomics-Driven Standardization of Herbal Medicine: Advances, Applications, and Sustainability Considerations. *Natural Product Communications*. 2025;20(8). doi:10.1177/1934578X251367650
6. Ugwu, C.E., Sure, S.M., Dike, C.C., Okpoga, N.A. and Egba, S.I. Phytochemical and *in vitro* antioxidant activities of methanol leave extract of *Alternanthera basiliana*. *Journal of Pharmacy Research*, 2018; 12(6): 835-839
7. Egba, S.I., Ogbodo, J.O., Ogbodo PO and Obike CA Toxicological Evaluation of Two Named Herbal Remedies Sold Across Orumba South Local Government of Anambra State, South-Eastern Nigeria. *Asian Journal of Research in Biochemistry*, 2017; 1(1):1-6
8. Aja O. A., Egba S. I., Uhoo Emmanuel Nnaemeka, Alaabo Prince Ogocukwu, Mba Obinna Joseph, and Oriaku Chinwe Edith. Hepatoprotective potentials of aqueous chloroform and methanol leaf extracts *Whitfieldia lateritia* 2, 4-dinitrophenylhydrazine induced anaemia in rats. *Bio-research and Biotechnology*, 2022; 20(2) 1434-1445
9. Markey O, McClean CM, Medlow P, Davison GW, Trinick TR, Duly E, *et al.* Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast. *Cardiovascular Diabetology*. 2011;10(1). doi:10.1186/1475-2840-10-78
10. Kanetkar P, Singhal R, Kamat M. *Gymnema sylvestre*: A Memoir. *Journal of Clinical Biochemistry and Nutrition*. 2007;41(2):77-81. doi:10.3164/jcbn.2007010

11. Sarker DK, Ray P, Dutta AK, Rouf R, Uddin SJ. Antidiabetic potential of fenugreek (*Trigonella foenum-graecum*): A magic herb for diabetes mellitus. *Food Science & Nutrition*. 2024;12(10):7108–36. doi:10.1002/fsn3.4440
12. Liu Z, Gong J, Huang W, Lu F, Dong H. The Effect of *Momordica charantia* in the Treatment of Diabetes Mellitus: A Review. *Evidence-based Complementary and Alternative Medicine*. 2021;2021:1–14. doi:10.1155/2021/3796265
13. Alum, E. U. (2024). Climate change and its impact on the bioactive compound profile of medicinal plants: implications for global health. *Plant Signaling & Behavior*, 19(1), 2419683. doi: 10.1080/15592324.2024.2419683.
14. Saeed, E., Javed, F., Rana, Z., Perveen, R., Mallhi, I.Y., Amjad, I., Maqsood, Q., Chaudhary, N.A., Tahir, S.B., Fatima, A., Rasheed, N.F. Bioactive Compounds, Their Mechanisms of Action, and Cardioprotective Effects of Pomegranate (*Punica granatum*): A Comprehensive Review. *eFood*, 2025; 6:e70075https://doi.org/10.1002/efd2.70075
15. Salleh NH, Zulkipli IN, Yasin HM, Ja'afar F, Ahmad N, Ahmad WANW, et al. Systematic review of medicinal plants used for treatment of diabetes in human clinical trials: an ASEAN perspective. *Evidence-based Complementary and Alternative Medicine*. 2021;2021:1–10. doi:10.1155/2021/5570939
16. Wang J, Bi C, Xi H, Wei F. Effects of administering berberine alone or in combination on type 2 diabetes mellitus: a systematic review and meta-analysis. *Frontiers in Pharmacology*. 2024;15. doi:10.3389/fphar.2024.1455534
17. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis. *The Annals of Family Medicine*. 2013;11(5):452–9. doi:10.1370/afm.1517
18. Shabil M, Bushi G, Bodige PK, Maradi PS, Patra BP, Padhi BK, et al. Effect of Fenugreek on Hyperglycemia: A Systematic Review and Meta-Analysis. *Medicina*. 2023;59(2):248. doi:10.3390/medicina59020248
19. McKennon SA. Non-Pharmaceutical intervention options for Type 2 diabetes: Complementary & integrative health approaches (Including natural products and Mind/Body practices). *Endotext - NCBI Bookshelf*. 2024. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK279062/>
20. Suksomboon N, Poolsup N, Boonkaew S, Suthisisang CC. Meta-analysis of the effect of herbal supplement on glycemic control in type 2 diabetes. *Journal of Ethnopharmacology*. 2011;137(3):1328–33. doi:10.1016/j.jep.2011.07.059
21. Pillukat MH, Bester C, Hensel A, Lechtenberg M, Petereit F, Beckebaum S, et al. Concentrated green tea extract induces severe acute hepatitis in a 63-year-old woman – A case report with pharmaceutical analysis. *Journal of Ethnopharmacology*. 2014;155(1):165–70. doi:10.1016/j.jep.2014.05.015
22. Philips CA, Ahamed R, Rajesh S, George T, Mohanan M, Augustine P. Comprehensive review of hepatotoxicity associated with traditional Indian Ayurvedic herbs. *World Journal of Hepatology*. 2020;12(9):574–95. doi:10.4254/wjh.v12.i9.574
23. Yuan L, Kaplowitz N. Mechanisms of drug-induced liver injury. *Clinics in Liver Disease*. 2013;17(4):507–18. doi:10.1016/j.cld.2013.07.002
24. Ukpabi-Ugo Jacinta Chigozie., Monanu, Michael Okechukwu, Patrick-Iwuanyanwu, Kingsley and Egbachukwu Simeon Ikechukwu. Potential hepatoprotective effect of different solvent fractions of *Ocimum gratissimum* (O G) in a paracetamol-induced hepatotoxicity in Wistar albino rats. *ScopeMed* 2016; 5(1): 10–16
25. Memon HL, Farooq S, Aslam M, Hyder A, Tareen K, Ahmed I, et al. Fatty liver disease in the diabetic population: A Cross-Sectional Study from Pakistan. *Cureus*. 2025. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC12234818/>
26. Famurewa, A. C., Orji, O. U., Aja, P. M., Nwite, F., Ohuche, S. E., Ukaosoanya, S. C., Nnaji, L. O., Joshua, D., Igwe, K. U. and Chima, S. F. Nephroprotective effects of *Datura stramonium* leaves against methotrexate nephrotoxicity via attenuation of oxidative stress-mediated inflammation and apoptosis in rats. *Avicenna Journal of Phytomedicine*. 2023; 13(4): 377-387. doi: 10.22038/ ajp.2023.21903.
27. Zhou Q, Jiang L, Su T, Liu G, Yang L. Overview of aristolochic acid nephropathy: an update. *Kidney Research and Clinical Practice*. 2023;42(5):579–90. doi:10.23876/j.krcp.22.211
28. Uroko RI., Uchenna ON., Achi NK., Agbafor A., Egba SI and Ojiakor CA (2019) Effects of aqueous extracts of palm fruits (*Elaeis guineensis*) on lipid profile and kidney function indices of male Wistar albino rats. *Jordan Journal of Biological Sciences*, 2019; 12(1): 5–16.
29. Alum, E. U., Umoru, G. U., Uti, D. E., Aja, P. M., Ugwu, O. P., Orji, O. U., Nwali, B. U., Ezeani, N., Edwin, N., Orinya, F. O. Hepato-protective effect of Ethanol Leaf Extract of *Datura stramonium* in Alloxan-induced Diabetic Albino Rats. *Journal of Chemical Society of Nigeria*. 2022; 47 (3): 1165 – 1176. <https://doi.org/10.46602/jcsn.v47i5.819>

30. Krishnamoorthy R, Gatasheh MK, Famurewa AC, Subbarayan S, Vijayalakshmi P. Neuroprotective Potential of Jimson Weed in Methotrexate-Induced Neurotoxicity: Insights into Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms via Modulation of Caspase-3, Interleukin-6, and Tumor Necrosis Factor-Alpha: In Silico. *Endocr Metab Immune Disord Drug Targets.* 2025 Aug 15. doi: 10.2174/0118715303350736241220090850.
31. Bodman MA, Dreyer MA, Varacallo MA. Diabetic peripheral neuropathy. *StatPearls - NCBI Bookshelf.* 2024. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK442009/>
32. Danesi R, Del Tacca M. Hematologic toxicity of immunosuppressive treatment. *Transplantation Proceedings.* 2004;36(3):703-4. doi:10.1016/j.transproceed.2004.03.016
33. Isaac Edyedu PMA, Ugwu OPC, Ugwu CN, Alum EU, et al. The role of pharmacological interventions in managing urological complications during pregnancy and childbirth: A review. *Medicine.* 2025;104(7):e41381.
34. Alum EU, Ugwu OPC, Obeagu EI, et al. Nutritional care in diabetes mellitus: A comprehensive guide. *Int J Innov Appl Res.* 2023;11(12):16-25.
35. Obeagu EI, Ahmed YA, Obeagu GU, Bunu UO, Ugwu OPC, Alum EU. Biomarkers of breast cancer: Overview. *Int J Curr Res Biol Med.* 2023;1:8-16.
36. Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, et al. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: Advances in targeted delivery and precision therapeutics. *J Nanobiotechnol.* 2025;23:336.
37. Ugwu CN, Ugwu OPC, Alum EU, Eze VH, Basajja M, Ugwu JN, Ogenyi FC, et al. Medical preparedness for bioterrorism and chemical warfare: A public health integration review. *Medicine.* 2025;104(18):e42289.
38. Obeagu EI, Scott GY, Amekpor F, Ugwu OPC, Alum EU. COVID-19 infection and diabetes: A current issue. *Int J Innov Appl Res.* 2023;11(1):25-30.
39. Offor CE, Ugwu OPC, Alum EU. Anti-diabetic effect of ethanol leaf extract of *Allium sativum* on albino rats. *Int J Pharm Med Sci.* 2014;4(1):1-3.
40. Asogwa FC, Okechukwu PCU, Esther UA, Chinedu OE, Nzubechukwu E. Hygienic and sanitary assessment of street food vendors in selected towns of Enugu North District, Nigeria. *Am-Eurasian J Sci Res.* 2015;10(1):22-26.
41. Alum EU, Uti DE, Agah VM, Orji OU, Nkeiru N, et al. Physico-chemical and bacteriological analysis of water used for drinking and domestic purposes in Amaozara Ozizza, Afikpo North, Nigeria. *Niger J Biochem Mol Biol.* 2023;38(1):1-8.
42. Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: Implications for health, disease, and therapeutic interventions. *Medicine.* 2024;103(19):e38088.
43. Ezekwe CI, Uzomba CR, Ugwu OPC. Effect of methanol extract of *Talinum triangulare* on hematology and liver parameters in rats. *Glob J Biotechnol Biochem.* 2013;8(2):51-60.
44. Alum EU, Inya JE, Ugwu OPC, Obeagu EI, Aloke C, Aja PM, Okpata MG, et al. Ethanolic leaf extract of *Datura stramonium* attenuates methotrexate-induced biochemical alterations in Wistar rats. *RPS Pharmacol Rep.* 2023;2(1):1-6.
45. Ugwu OPC, Erisa K, Inyangat R, Obeagu EI, et al. Indigenous medicinal plants for managing diabetes in Uganda: Ethnobotanical and pharmacotherapeutic insights. *INOSR Exp Sci.* 2023;12(2):214-224.
46. Alum EU, Aja W, Ugwu OPC. Vitamin composition of ethanol leaf and seed extracts of *Datura stramonium*. *Avicenna J Med Biochem.* 2023;11(1):92-97.
47. Ezenwaji CO, Alum EU, Ugwu OPC. Digital health in pandemic preparedness and response: Securing global health? *Glob Health Action.* 2024;17(1):2419694.
48. Adonu CC, Ugwu OP, Bawa A, Ossai EC, Nwaka AC. Intrinsic blood coagulation studies in patients with diabetes and hypertension. *Int J Pharm Med Bio Sci.* 2013;2(2):36-45.
49. Offor CE, Ugwu PC, Okechukwu PM, Igwenyi IO. Proximate and phytochemical analyses of *Terminalia catappa* leaves. *Eur J Appl Sci.* 2015;7(1):9-11.
50. Enechi YS, Ugwu OC, Ugwu KK, Ugwu OPC, Omeh N. Evaluation of antinutrient levels of *Ceiba pentandra* leaves. *IJRPPAS.* 2013;3(3):394-400.
51. Alum EU, Uti DE, Ugwu OPC, Alum BN, Edeh FO, Ainebyoona C. Microbiota in cancer development and treatment. *Discov Oncol.* 2025;16(1):646.
52. Asogwa FC, Okoye COB, Ugwu OPC, Edwin N, Alum EU, Egwu CO. Phytochemistry and antimicrobial assay of *Jatropha curcas* extracts. *Eur J Appl Sci.* 2015;7(1):12-16.
53. Enechi OC, Oluka HI, Ugwu PCO. Acute toxicity and ameliorative properties of *Alstonia boonei* leaf extract on diabetic rats. *Afr J Biotechnol.* 2014;13(5).
54. Alum EU, Obeagu EI, Ugwu OPC. Enhancing water, sanitation, and hygiene for diarrhoea control and SDGs: A review. *Medicine.* 2024;103(38):e39578.
55. Odo CE, Nwodo OFC, Joshua PE, Ugwu OPC, Okonkwo CC. Anti-diarrhoeal effect of chloroform-methanol extract of *Persea americana* seeds in rats. *J Pharm Res.* 2013;6(3):331-335.

56. Ugwu OPC, Obeagu EI, Alum EU, Michael M, et al. Effect of ethanol leaf extract of *Chromolaena odorata* on hepatic markers in diabetic rats. *IAA J Appl Sci.* 2023;9(1):46-56.
57. Ibiam UA, Alum EU, Orji OU, Aja PM, Nwamaka EN, Ugwu OPC, et al. Anti-inflammatory effects of *Buchholzia coriacea* leaf extract in arthritic rats. *Indo Am J Pharm Sci.* 2018;5(7):6341-6357.
58. Obeagu EI, Obeagu GU, Odo EO, Alum EU. Nutritional approaches for enhancing immune competence in HIV-positive individuals. *IDOSR J Appl Sci.* 2024;9(1):40-50.
59. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: Gatekeeper of iron in malaria resistance. *Newport Int J Res Med Sci.* 2023;4(2):1-8.
60. Nyamboga TO, Ugwu OPC, Ugwu JN, et al. Biotechnological innovations in soil health management: a systematic review of integrating microbiome engineering, bioinformatics, and sustainable practices. *Cogent Food Agric.* 2025;11(1):2519811.
61. Madu ANB, Alum EU, Aloh HE, Ugwu OPC, Obeagu EI, Uti DE, Egba SI, Ukaidi CUA. The price of progress: Assessing the financial costs of HIV/AIDS management in East Africa. *Medicine.* 2025;104(18):e42300.
62. Alum EU, Ugwu OPC. Beyond pregnancy: Understanding long-term implications of gestational diabetes mellitus. *INOSR Sci Res.* 2024;11(1):63-71.
63. Ugwu OPC, Alum EU, Okon MB, Aja PM, Obeagu EI, Onyeneke EC. Anti-nutritional and GC-MS analysis of ethanol root extract and fractions of *Sphenocentrum jollyanum*. *RPS Pharmacol Pharm Rep.* 2023;2(2):rquad007.
64. Eze VH, Eze CE, Mbabazi A, Ugwu CN, Ugwu PO, Ogenyi CF, Ugwu JN, et al. Qualities and characteristics of a good scientific research writing: Step-by-step approaches. *IAA J Appl Sci.* 2023;9(2):71-76.
65. Igwenyi IO, Nchi PO, Okechukwu UPC, Igwenyi IP, Obasi DC, Edwin N. Nutritional potential of *Azadirachta indica* seeds. *Indo Am J Pharm Sci.* 2017;4(2):477-482.
66. Enechi OC, Oluka IH, Ugwu OPC, Omeh YS. Effect of ethanol leaf extract of *Alstonia boonei* on lipid profile of alloxan-induced diabetic rats. *Afr J Biotechnol.* 2013;24.
67. Ugwu OPC. Anti-malaria effect of ethanol extract of *Moringa oleifera* leaves on malaria-induced mice. University of Nigeria Nsukka; 2011:39.
68. Alum EU, Ugwu OPC, Obeagu EI. Nutritional interventions for cervical cancer patients: Beyond conventional therapies. *J Cancer Res Cell Ther.* 2024;8(1):1-6.
69. Obeagu EI, Obeagu GU. Advancements in immune augmentation strategies for HIV patients. *IAA J Biol Sci.* 2024;11(1):1-11.
70. Okechukwu PU, Nzubechukwu E, Ogbanshi ME, Ezeani N, Nworie MO. Effect of ethanol leaf extract of *Jatropha curcas* on chloroform-induced hepatotoxicity in albino rats. *Glob J Biotech Biochem.* 2015;10:11-15.
71. Ilozue NM, Ikezu UP, Okechukwu PCU. Antimicrobial and phytochemical screening of *Persea americana* seed extracts. *IOSR J Pharm Biol Sci.* 2014;9(2):23-25.
72. Onyeze R, Udeh SM, Akachi B, Ugwu OP. Isolation and characterization of fungi associated with spoilage of corn (*Zea mays*). *Int J Pharm Med Biol Sci.* 2013;2(3):86-91.
73. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: The gatekeeper of iron in malaria resistance. *Newport Int J Res Med Sci.* 2023;4:1-8.
74. Obeagu EI, Alum EU, Obeagu GU, Ugwu OPC. Prostate cancer: Review on risk factors. *Eurasian Exp J Public Health.* 2023;4(1):4-7.
75. Offor CE, Okaka ANC, Ogbugo SO, Egwu CO, Okechukwu PC. Effects of ethanol leaf extract of *Pterocarpus santalinoides* on haemoglobin, packed cell volume and platelets. *IOSR J Nurs Health Sci.* 2015;4:108-112, 93.
76. Offor C, Aja PC, Ugwu O, Agbafor KN. Effects of ethanol leaf extract of *Gmelina arborea* on serum proteins in albino rats. *Glob J Environ Res.* 2015;9(1):1-4.
77. Alum EU, Uti DE, Obeagu EI, Ugwu OPC, Alum BN. Cancer's psychosocial aspects: Impact on patient outcomes. *Elite J Med.* 2024;2(6):32-42.
78. Alum EU, Ugwu OPC, Egba SI, Uti DE, Alum BN. Climate variability and malaria transmission: Unravelling the complex relationship. *INOSR Sci Res.* 2024;11(2):16-22.
79. Alum EU, Obeagu EI, Ugwu OPC, Egba SI, EjimUti DE, Ukaidi CUA, et al. Confronting dual challenges: Substance abuse and HIV/AIDS. *Elite J HIV.* 2024;2(5):1-8.