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ABSTRACT 
Diabetes mellitus is a global metabolic disorder characterized by chronic hyperglycaemia and an array of 
microvascular and macrovascular complications. A substantial body of evidence implicates oxidative stress-an 
imbalance between reactive oxygen species (ROS) production and antioxidant defenses a central mechanism in the 
initiation and progression of diabetic pathology. Hyperglycaemia potentiates ROS generation through multiple 
biochemical pathways, including increased mitochondrial electron transport chain leakage, activation of the polyol 
pathway, advanced glycation end-product (AGE) formation, protein kinase C (PKC) activation, and enhanced 
hexosamine flux. These ROS-driven processes damage cellular macromolecules, impair signalling, and trigger 

inflammatory cascades that contribute to β-cell dysfunction, insulin resistance, endothelial injury, neuropathy, 
nephropathy, and hepatopathy. Endogenous antioxidant systems (enzymatic: superoxide dismutase, catalase, 
glutathione peroxidase; non-enzymatic: glutathione, vitamins C and E, and thiol-containing proteins) attempt to 
neutralize oxidative insults, but are often overwhelmed in diabetes. Therapeutic strategies aiming to rebalance redox 
homeostasis-ranging from lifestyle modifications and glycaemic control to pharmacological antioxidants and agents 
that upregulate endogenous defenses-show promise in ameliorating diabetic complications. This review synthesizes 
mechanistic links between oxidative stress and diabetic pathophysiology, discusses biomarkers and experimental 
models used to study redox imbalance, evaluates antioxidant-based interventions, and highlights gaps and future 
directions for translating redox biology into clinical practice. 
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INTRODUCTION 

Diabetes mellitus represents a complex and heterogeneous group of chronic metabolic disorders characterized by 
persistent hyperglycaemia resulting from defects in insulin secretion, insulin action, or both [1-5]. The two principal 
forms, type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), differ in their etiology but converge 
on similar molecular mechanisms of cellular injury. Type 1 diabetes arises primarily from autoimmune destruction 

of pancreatic β-cells leading to absolute insulin deficiency, while type 2 diabetes develops as a consequence of 

peripheral insulin resistance coupled with a progressive decline in β-cell function [6-8]. Despite these differences, 
oxidative stress has emerged as a central unifying factor in the onset and progression of both types. Under normal 
physiological conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are continuously 
generated as by-products of aerobic metabolism and play vital roles in cellular signaling, immune defense, and 
homeostasis [9-13]. However, in diabetes, the delicate balance between ROS production and antioxidant defense 
systems is disrupted, resulting in oxidative stress [14-18]. Persistent hyperglycaemia induces metabolic 
disturbances that amplify ROS generation while simultaneously impairing endogenous antioxidant mechanisms 
[19-24]. This imbalance leads to cumulative oxidative damage to lipids, proteins, and nucleic acids, contributing to 

insulin resistance, β-cell dysfunction, and the development of chronic diabetic complications such as nephropathy, 
neuropathy, retinopathy, and cardiovascular disease [25-28]. The reciprocal relationship between oxidative stress 
and hyperglycaemia forms a vicious cycle in which oxidative injury promotes further metabolic dysregulation, 
aggravating disease progression. Understanding this interplay between oxidative stress and antioxidant defense 
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mechanisms is crucial for developing therapeutic strategies aimed at mitigating the burden of diabetes and its 
complications. 
2. Mechanisms of ROS Generation in Diabetes 
Several interrelated biochemical pathways contribute to excessive ROS formation under hyperglycaemic conditions. 
One of the major sources is mitochondrial dysfunction. Elevated intracellular glucose increases flux through the 

tricarboxylic acid (TCA) cycle, leading to an accumulation of reduced electron carriers such as NADH and FADH₂. 
These excess electrons overload the mitochondrial electron transport chain, resulting in electron leakage at 

complexes I and III and the formation of superoxide anion (O₂•−) [29-34]. Chronic overproduction of mitochondrial 
ROS damages mitochondrial DNA, respiratory enzymes, and membranes, further impairing energy metabolism and 
intensifying oxidative injury [35-39]. The polyol pathway also contributes to oxidative stress in diabetes. In this 
pathway, the enzyme aldose reductase reduces glucose to sorbitol, consuming NADPH in the process [40-43]. Since 
NADPH is required for regenerating reduced glutathione (GSH), its depletion weakens cellular antioxidant capacity. 
Accumulation of sorbitol within cells further disturbs osmotic balance, leading to cell dysfunction and oxidative 
vulnerability [44-48]. 
Another critical mechanism involves the formation of advanced glycation end-products (AGEs). Persistent 
hyperglycaemia promotes non-enzymatic glycation of proteins, lipids, and nucleic acids, resulting in the generation 
of AGEs that bind to specific receptors (RAGE) on cell surfaces [49-55]. This interaction activates NADPH 

oxidases and pro-inflammatory transcription factors such as NF-κB, triggering ROS overproduction, cytokine 
release, and endothelial inflammation [56-61]. Activation of protein kinase C (PKC) represents another oxidative 
mechanism. Elevated diacylglycerol levels in hyperglycaemia activate various PKC isoforms that stimulate NADPH 
oxidase, decrease nitric oxide bioavailability, and promote vasoconstriction and vascular permeability-key features 
of diabetic vascular dysfunction [62-69]. The hexosamine pathway also plays a role by diverting excess glucose into 
fructose-6-phosphate, which undergoes O-GlcNAcylation of proteins, altering enzyme activities and transcription 
factors involved in oxidative stress regulation [70-76]. This modification impairs mitochondrial function and 
suppresses antioxidant enzyme expression. Finally, chronic inflammation associated with diabetes exacerbates 
oxidative stress. Hyperglycaemia-induced metabolic alterations activate macrophages and neutrophils, which 
generate ROS and RNS as part of the inflammatory response [77-80]. The combined effects of these pathways result 
in sustained oxidative stress, cellular injury, and the progression of diabetic complications. 
3. Cellular Targets and Consequences of Oxidative Damage 
Reactive oxygen species (ROS) exert widespread effects on cellular structures and signalling pathways, disrupting 
metabolic homeostasis and accelerating diabetic complications. Among the most vulnerable targets are pancreatic 

β-cells, insulin signalling mechanisms, endothelial cells, neuronal tissues, and lipid membranes [81-85]. 

Pancreatic β-cells are particularly sensitive to oxidative stress because they possess inherently low levels of 
antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase [86]. Excess ROS 

generated during chronic hyperglycaemia directly damage β-cell membranes, DNA, and mitochondria, impairing 
insulin gene expression and secretion. Persistent oxidative damage triggers apoptotic pathways, leading to a 

progressive decline in β-cell mass and worsening glycaemic control [87]. This oxidative injury establishes a vicious 
cycle where reduced insulin output further enhances hyperglycaemia and subsequent ROS formation. In peripheral 
tissues, oxidative stress interferes with insulin signal transduction [88]. ROS and reactive nitrogen species can 
oxidize cysteine residues or nitrify tyrosine residues on insulin receptor substrates (IRS) and downstream kinases 
such as Akt, impairing phosphorylation events necessary for glucose uptake [89]. The resulting insulin resistance 
limits glucose transport into skeletal muscle and adipose tissue, aggravating hyperglycaemia and further promoting 
oxidative stress. Endothelial dysfunction is another major consequence of oxidative stress in diabetes. ROS rapidly 
react with nitric oxide (NO), forming peroxynitrite and reducing NO bioavailability [90]. This reaction disrupts 
vascular tone regulation, promotes vasoconstriction, and enhances platelet aggregation. Additionally, ROS induces 
uncoupling of endothelial nitric oxide synthase (eNOS), causing it to generate superoxide instead of NO, 
perpetuating vascular oxidative stress [91-92]. The resulting endothelial damage contributes to the development 
of atherosclerosis, hypertension, and other cardiovascular complications of diabetes. 
Nephrotoxicity and neuropathy also stem from ROS-induced cellular damage. In diabetic kidneys, oxidative stress 
alters glomerular basement membrane integrity, promotes mesangial expansion, and stimulates pro-fibrotic 
cytokines, leading to diabetic nephropathy [21]. Similarly, oxidative damage to neuronal mitochondria, Schwann 
cells, and axonal membranes triggers neuropathic pain and sensory deficits characteristic of diabetic neuropathy 
[22]. Moreover, oxidative attack on lipids initiates lipid peroxidation, generating reactive aldehydes such as 
malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) [23]. These secondary products form adducts with 
proteins and DNA, altering their structure and function. Lipid peroxidation propagates membrane instability, 
impairs cellular communication, and exacerbates inflammatory signalling, contributing to metabolic dysregulation 
and tissue degeneration observed in chronic diabetes [24]. 
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4. Antioxidant Defenses in Diabetes 
Cells rely on an intricate network of antioxidant systems to counteract oxidative damage. These include both 
enzymatic and non-enzymatic components that work synergistically to maintain redox homeostasis. 
The enzymatic antioxidants constitute the first line of defense. Superoxide dismutases (SOD1 in the cytosol and 

SOD2 in mitochondria) catalyze the dismutation of superoxide radicals into hydrogen peroxide (H₂O₂) [25]. This 

H₂O₂ is subsequently detoxified by catalase in peroxisomes and glutathione peroxidase (GPx) in the cytosol and 
mitochondria [26]. Thioredoxin and peroxiredoxins also play vital roles in reducing peroxides and maintaining 
thiol redox balance [27]. 
Non-enzymatic antioxidants complement these enzymes by directly scavenging free radicals and regenerating 
oxidized antioxidant molecules. Glutathione (GSH), a tripeptide composed of glutamate, cysteine, and glycine, acts 
as a major intracellular redox buffer [28]. Vitamins C and E interrupt chain reactions of lipid peroxidation, while 
carotenoids, uric acid, and flavonoids contribute additional protective effects [29]. Metal-binding proteins such as 
ferritin and ceruloplasmin limit ROS generation by sequestering redox-active metals [30]. 
Adaptive antioxidant responses are regulated by the transcription factor nuclear factor erythroid 2–related factor 2 
(Nrf2). Under oxidative stress, Nrf2 dissociates from its inhibitor Keap1 and translocates to the nucleus, activating 
genes that encode detoxifying and antioxidant enzymes [31]. However, in diabetic conditions, Nrf2 activity is often 
suppressed, reducing the ability of cells to mount effective antioxidant defenses. Numerous studies have 
demonstrated diminished activities of SOD, catalase, and GPx in diabetic patients, alongside decreased GSH levels 
[32]. This reduction, combined with elevated ROS production, shifts the redox equilibrium toward a pro-oxidant 

state. Consequently, insufficient antioxidant protection contributes to oxidative damage of β-cells, endothelium, and 
other tissues, reinforcing the progression of diabetic complications [33]. Strengthening these antioxidant defenses 
remains a critical therapeutic goal for mitigating oxidative injury in diabetes. 
5. Therapeutic Strategies Targeting Oxidative Stress 
Restoring redox balance in diabetes requires a multifaceted approach that addresses both the sources of oxidative 
stress and the weakening of endogenous antioxidant defenses. Current strategies range from lifestyle interventions 
and improved glycaemic control to pharmacological and nutraceutical therapies that modulate redox homeostasis 
and mitochondrial function. 
5.1 Glycaemic Control and Lifestyle 
Maintaining optimal glycaemic control remains the cornerstone of preventing oxidative stress in diabetes. Chronic 
hyperglycaemia accelerates ROS formation through multiple metabolic pathways; hence, reducing blood glucose 
directly limits oxidative injury. Lifestyle modifications such as calorie restriction, weight loss, and regular physical 
exercise improve insulin sensitivity, enhance mitochondrial efficiency, and reduce systemic inflammation [34]. 
Exercise has been shown to upregulate endogenous antioxidant enzymes, including superoxide dismutase and 
glutathione peroxidase, while diets rich in fruits, vegetables, and whole grains provide natural antioxidants and anti-
inflammatory compounds [35]. Stress management and adequate sleep also play indirect roles by reducing cortisol-
mediated metabolic stress, which can otherwise exacerbate ROS production [36]. 
5.2 Pharmacologic Agents with Antioxidant Actions 
Several conventional antidiabetic medications possess intrinsic antioxidant properties beyond their glucose-
lowering effects. Metformin, a first-line oral antidiabetic, improves mitochondrial respiration and reduces superoxide 
production by activating AMP-activated protein kinase (AMPK) [37]. Sodium-glucose cotransporter-2 (SGLT2) 
inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have been shown to attenuate oxidative stress and 
inflammation in vascular tissues, possibly through modulation of mitochondrial and endothelial function [38]. 
Additionally, drugs such as pioglitazone and other thiazolidinediones exert antioxidant effects by activating 

peroxisome proliferator-activated receptor gamma (PPAR-γ), which enhances cellular redox balance [39]. Direct 
antioxidant therapies, including N-acetylcysteine (a glutathione precursor) and alpha-lipoic acid, act by replenishing 
thiol pools and scavenging free radicals [40]. Although promising, their clinical benefits depend on timing, dosage, 
and patient metabolic status. 
5.3 Nutraceuticals and Dietary Antioxidants 
Plant-derived bioactive compounds, particularly polyphenols such as resveratrol, quercetin, and curcumin, exhibit 
potent antioxidant and anti-inflammatory properties. They scavenge ROS, enhance Nrf2 activation, and improve 
mitochondrial biogenesis. Vitamins C and E remain among the most studied dietary antioxidants, reducing lipid 
peroxidation and protecting cell membranes from oxidative damage [41]. However, clinical trial outcomes are 
inconsistent-while some studies report improved oxidative biomarkers and endothelial function, others show limited 
benefits or even potential interference with physiological ROS signalling. The efficacy of dietary antioxidants 
appears to depend on individual redox status, combination with other therapies, and long-term adherence to 
balanced nutrition rather than supplementation alone. 
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5.4 Nrf2 Activators and Mitochondria-Targeted Antioxidants 
A more targeted therapeutic strategy involves activating endogenous antioxidant pathways, particularly through 
the nuclear factor erythroid 2–2-related factor 2 (Nrf2). Pharmacologic Nrf2 activators, including bardoxolone 
methyl and naturally occurring compounds such as sulforaphane and curcumin, enhance the expression of 
detoxifying and antioxidant enzymes, thereby strengthening intrinsic cellular defenses [42]. Another emerging 
approach focuses on mitochondria-targeted antioxidants, such as mitoQ and SS peptides, which are designed to 
accumulate within mitochondria and neutralize ROS at their main site of production [43]. Preliminary studies 
indicate that these compounds improve mitochondrial function and reduce oxidative damage in diabetic models, 
though further clinical trials are needed to establish efficacy and safety. 
5.5 Enzyme Modulators and NADPH Oxidase Inhibitors 
NADPH oxidases (NOX enzymes) are significant sources of superoxide generation in diabetes. Selective NOX 
inhibitors are under investigation as potential therapeutic agents to limit ROS overproduction without impairing 
essential immune functions [44]. Similarly, compounds that modulate mitochondrial electron transport chain 
activity or prevent mitochondrial uncoupling can decrease electron leakage and ROS formation [45]. Although 
these enzyme-targeted therapies are still largely experimental, they represent promising directions in the 
development of redox-based pharmacological interventions for diabetes management. 
In summary, successful redox-targeted therapy for diabetes requires an integrative approach combining lifestyle 
modification, glycaemic control, and pharmacologic or nutraceutical agents tailored to individual oxidative stress 
profiles. 

CONCLUSION 
Oxidative stress is a central and multifactorial driver of diabetic pathogenesis and complications. While antioxidant 
defenses are inherently poised to counter ROS, chronic hyperglycaemia and associated metabolic derangements 
often overwhelm these systems. Therapeutic strategies that restore redox balance by reducing ROS production, 
enhancing endogenous antioxidant capacity, or selectively scavenging harmful species hold promise for mitigating 

β-cell failure, insulin resistance, and end-organ damage. Success will depend on precise mechanistic understanding, 
careful patient selection, and combination therapies that preserve physiological ROS signalling while preventing 
pathological oxidative injury. Translating redox biology into effective clinical interventions remains an achievable 
but complex goal that warrants continued, focused research. 
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