

Antioxidant Phytochemicals and Immune Modulation in HIV/AIDS: Mechanisms, Evidence, and Clinical Relevance

Odile Patrick Thalia

Faculty of Biological Sciences Kampala International University Uganda

ABSTRACT

Human Immunodeficiency Virus (HIV) infection is characterized by persistent immune activation, chronic inflammation, and oxidative stress, which collectively accelerate CD4+ T-cell depletion and contribute to progressive immune dysfunction. Oxidative stress, arising from excessive production of reactive oxygen species and impaired antioxidant defenses, plays a pivotal role in enhancing viral replication, disrupting cellular immunity, and driving the onset of comorbidities such as cardiovascular disease, neurocognitive impairment, and metabolic disorders in people living with HIV/AIDS (PLWHA). Despite the success of antiretroviral therapy (ART) in suppressing viral replication and extending lifespan, ART itself can exacerbate mitochondrial dysfunction and oxidative injury, underscoring the need for adjunctive therapeutic strategies. Antioxidant phytochemicals-bioactive compounds naturally present in fruits, vegetables, herbs, and spices-have attracted attention due to their potent free radical scavenging capacity, ability to restore redox balance, and immunomodulatory effects. Compounds such as flavonoids, carotenoids, and polyphenols have been shown to modulate key signaling pathways, reduce pro-inflammatory cytokine production, and protect immune cells from oxidative damage. This review examines the mechanistic basis of oxidative stress in HIV pathogenesis, summarizes experimental and clinical evidence on the role of phytochemicals in mitigating redox imbalance, and discusses their clinical relevance. Finally, it highlights research gaps and future directions for incorporating antioxidant phytochemicals into comprehensive HIV management strategies.

Keywords: Antioxidant phytochemicals, Oxidative stress, HIV/AIDS, Immune modulation, Reactive oxygen species (ROS), Polyphenols and flavonoids, Redox homeostasis

INTRODUCTION

Human Immunodeficiency Virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) remain among the most pressing global health challenges, particularly in sub-Saharan Africa, where the disease burden is highest [1-4]. Despite the remarkable success of antiretroviral therapy (ART) in reducing viral load, improving survival, and transforming HIV from a fatal illness into a manageable chronic condition, multiple challenges persist [5-8]. These include the emergence of drug-resistant viral strains, incomplete immune reconstitution in many patients, and the rising incidence of non-AIDS comorbidities such as cardiovascular disease, metabolic disorders, and neurocognitive decline. Understanding the biological mechanisms that underlie these persistent complications is crucial for developing adjunctive interventions that go beyond viral suppression [9-11]. One central but often underappreciated factor in the pathophysiology of HIV is oxidative stress. Oxidative stress refers to an imbalance between the generation of reactive oxygen species (ROS) and the capacity of endogenous antioxidant defenses to neutralize them [12-15]. Excessive ROS production contributes to tissue damage, cellular dysfunction, and chronic inflammation [16-18]. In the context of HIV, oxidative stress both drives and results from immune dysregulation, thereby accelerating disease progression. It not only promotes viral replication but also amplifies immune cell apoptosis and contributes to systemic immune activation [19-23]. Furthermore, ART itself, while life-saving, can inadvertently intensify oxidative damage through mitochondrial toxicity, highlighting the dual burden of virus- and therapy-induced oxidative stress [24-27].

Growing evidence suggests that modulation of oxidative stress could improve immune function and clinical outcomes in people living with HIV/AIDS (PLWHA) [28-30]. Among potential interventions, antioxidant phytochemicals have received increasing scientific attention. These naturally occurring compounds, abundant in

fruits, vegetables, herbs, and spices, include polyphenols, flavonoids, carotenoids, terpenoids, and alkaloids. Their biological activities extend beyond simple free radical scavenging to include modulation of signaling pathways, regulation of gene expression, and restoration of redox balance [31-35]. Importantly, several phytochemicals also possess immunomodulatory and anti-inflammatory properties, making them attractive candidates for integrative HIV management strategies [36-39]. This review aims to synthesize current knowledge on the role of oxidative stress in HIV infection, examine how phytochemicals influence immune function in this context, and evaluate the clinical evidence supporting their therapeutic relevance [40-45]. By highlighting both mechanistic insights and translational potential, the discussion underscores the importance of antioxidant phytochemicals as adjuncts in HIV care, particularly in regions where dietary sources of these compounds are abundant but underutilized [46-49].

Oxidative Stress and Immune Dysfunction in HIV/AIDS

Mechanisms of Oxidative Stress in HIV

Oxidative stress arises in HIV infection through multiple, interconnected mechanisms. Viral replication itself is associated with increased ROS generation in infected CD4+ T cells and macrophages [50-55]. During active replication, viral proteins such as Tat and gp120 stimulate oxidative pathways, leading to excessive production of superoxide anions, hydrogen peroxide, and hydroxyl radicals [56-59]. These molecules overwhelm endogenous antioxidant defenses, including superoxide dismutase, catalase, and glutathione peroxidase.

ART, although indispensable for viral suppression, paradoxically contributes to oxidative stress. Nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs) are known to induce mitochondrial toxicity by inhibiting mitochondrial DNA polymerase gamma, resulting in impaired electron transport chain activity and enhanced leakage of electrons that form ROS [60-65]. This ART-induced mitochondrial dysfunction adds to the oxidative burden already present in HIV-infected individuals.

Inflammatory mediators further amplify oxidative damage. Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF- α), interleukin-1 beta (IL-1 β), and interleukin-6 (IL-6) are elevated during chronic HIV infection [66-69]. These cytokines activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and other ROS-producing enzymes, creating a vicious cycle in which oxidative stress sustains inflammation and inflammation perpetuates oxidative stress [70]. The resulting feedback loop accelerates immune exhaustion and tissue damage.

Impact on the Immune System

The immune system is particularly vulnerable to redox imbalance in HIV. Excessive ROS impairs antigen presentation by dendritic cells and macrophages, reducing their ability to mount effective adaptive responses [71-73]. In T lymphocytes, ROS trigger mitochondrial damage and activate pro-apoptotic signaling pathways, leading to premature death of CD4+ cells the central targets of HIV infection [14]. The loss of CD4+ T cells not only weakens adaptive immunity but also disrupts coordination between innate and adaptive arms of the immune system [74-75].

Oxidative stress also plays a direct role in enhancing HIV transcription and replication. Activation of redox-sensitive transcription factors such as nuclear factor kappa B (NF- κ B) increases transcription of HIV proviral DNA integrated into host genomes [76-78]. This creates a feed-forward mechanism whereby oxidative stress fuels viral propagation, which in turn generates more oxidative stress through viral protein activity and immune activation.

Chronic redox imbalance contributes to the persistent immune activation that characterizes HIV pathogenesis, even in individuals on effective ART [79-80]. Continuous activation of T cells and macrophages drives immune exhaustion, increases susceptibility to opportunistic infections, and predisposes PLWHA to non-AIDS comorbidities [67-70]. Over time, this unresolved oxidative and inflammatory milieu undermines long-term immune reconstitution, limiting the full benefits of ART. In summary, oxidative stress in HIV/AIDS is both a cause and a consequence of immune dysfunction. It accelerates CD4+ T-cell depletion, enhances viral replication, and perpetuates chronic inflammation [71-73]. Addressing oxidative stress, therefore, represents a promising adjunctive strategy to improve immune health and clinical outcomes in HIV management.

Antioxidant Phytochemicals: Classification and Mechanisms

Antioxidant phytochemicals represent a diverse group of bioactive compounds derived from plants that exert protective effects against oxidative stress and immune dysfunction [74-78]. Their mechanisms of action extend beyond simple neutralization of free radicals to include modulation of intracellular signaling pathways, regulation of gene expression, and preservation of cellular integrity [79]. In the context of HIV/AIDS, where oxidative stress and immune dysregulation fuel disease progression, these compounds offer promising therapeutic potential.

Polyphenols

Polyphenols such as resveratrol, quercetin, and catechins are widely studied for their multifunctional biological effects. One of their most relevant mechanisms in HIV is the inhibition of nuclear factor kappa B (NF- κ B) activation, a transcription factor that promotes HIV proviral DNA expression [80]. By suppressing NF- κ B signaling, polyphenols indirectly reduce viral replication [60]. Additionally, their potent free radical scavenging activity protects immune cells from ROS-induced apoptosis, thereby preserving CD4+ T-cell survival [24]. Resveratrol

also activates sirtuin-1 pathways, which enhance cellular resistance to oxidative injury and regulate inflammatory responses, adding another layer of immune protection [25].

Carotenoids

Carotenoids, including beta-carotene and lycopene, are fat-soluble pigments with strong antioxidant properties. Their ability to stabilize cellular membranes protects lymphocytes and macrophages from lipid peroxidation, a common consequence of chronic oxidative stress in HIV [26]. Carotenoids also play an immunostimulatory role by supporting natural killer (NK) cell activity, enhancing antibody production, and promoting lymphocyte proliferation [27]. Beta-carotene, a precursor of vitamin A, contributes to mucosal immunity, which is often compromised in HIV-infected individuals [28]. These effects collectively enhance host defense against both HIV and opportunistic infections.

Flavonoids

Flavonoids, such as curcumin, apigenin, and kaempferol, exert broad immunomodulatory functions. They downregulate pro-inflammatory cytokines like TNF- α and IL-6, which are elevated in HIV infection and contribute to chronic immune activation [29]. Flavonoids also improve mitochondrial function, counteracting the oxidative damage induced by ART [30]. Curcumin, for example, has been shown to regulate multiple signaling pathways including mitogen-activated protein kinases (MAPKs) and Janus kinase/signal transducers and activators of transcription (JAK/STAT), leading to reduced inflammation and enhanced immune regulation [31]. Through these mechanisms, flavonoids not only attenuate oxidative stress but also support long-term immune reconstitution.

Alkaloids and Terpenoids

Alkaloids and terpenoids constitute another class of phytochemicals with therapeutic potential. Certain alkaloids exhibit direct antiviral activity by interfering with viral entry and replication [32]. Terpenoids, on the other hand, are known to enhance the functional activity of macrophages and dendritic cells, thereby strengthening innate immune responses [33]. Both classes of compounds also possess antioxidant properties, reducing oxidative injury in immune cells. Although less studied in the context of HIV compared to polyphenols or flavonoids, their dual role in antiviral defense and redox regulation makes them valuable candidates for further investigation. In summary, phytochemicals act through overlapping but distinct mechanisms, including inhibition of viral transcription, protection of immune cells from oxidative damage, modulation of inflammatory pathways, and enhancement of innate and adaptive immunity. Their multifunctionality highlights their potential as complementary strategies alongside ART in the management of HIV/AIDS.

CONCLUSION

Oxidative stress is a critical driver of immune dysfunction and disease progression in HIV/AIDS. Antioxidant phytochemicals offer promising avenues for restoring immune balance, reducing viral replication, and preventing comorbidities. While preclinical and preliminary clinical evidence is encouraging, robust trials are essential to translate these findings into practice. Integrating phytochemicals into HIV management could complement ART and contribute to holistic, patient-centered care.

REFERENCES

1. Alum, E. U., Obeagu, E. I., Ugwu, O. P. C., Samson, A. O., Adepoju, A. O., Amusa, M. O. Inclusion of nutritional counseling and mental health services in HIV/AIDS management: A paradigm shift. *Medicine (Baltimore)*. 2023;102(41):e35673. <http://dx.doi.org/10.1097/MD.00000000000035673>. PMID: 37832059
2. Ugwu OPC, Egba SI, EjimUti DE, Ukaidi CUA, Echegu DA, Alum EU, Obeagu EI. Confronting Dual Challenges: Substance Abuse and HIV/AIDS. *Elite Journal of HIV*, 2024; 2(5): 1-8.<https://epjournals.com/journals/EJHIV>
3. Uhuo E N, Egba S I, Nwuke P C, Obike C A and Kelechi G K. Antioxidative properties of *Adansonia digitata* L. (baobab) leaf extract exert protective effect on doxorubicin induced cardiac toxicity in Wistar rats. *Clinical Nutrition Open Science* 2022; 45:3-16
4. Emmanuel Ifeanyi Obeagu, Nwanganga Ihuoma Ubosi, Getrude Uzoma Obeagu, Hauwa Ali Buhari and Simeon Ikechukwu Egba (2023) Storms and struggles: Managing HIV Amid Natural Disasters *Int. J. Curr. Res. Chem. Pharm. Sci.* (2023). 10(11): 14-25
5. Utu DE, Ugwu OP, Alum EU, Alum BN. Toward a cure-Advancing HIV/AIDS treatment modalities beyond antiretroviral therapy: A Review. *Medicine (Baltimore)*. 2024 Jul 5;103(27):e38768. doi: 10.1097/MD.00000000000038768. PMID: 38968496.
6. Ochulor Okechukwu C., Njoku Obioma U., Uroko Robert I and Egba Simeon I. Nutritional composition of *Jatropha tanjorensis* leaves and effects of its aqueous extract on carbon tetrachloride induced oxidative stress in male Wistar albino rats. *Biomedical Research* 2018; 29(19): 3569-3576
7. Aja, P. M., Okon, M. B., Utu, D. E. Reducing HIV Infection Rate in Women: A Catalyst to reducing HIV Infection pervasiveness in Africa. *International Journal of Innovative and Applied Research*. 2023; 11(10):01-06. DOI:10.58538/IJIAR/2048. <http://dx.doi.org/10.58538/IJIAR/2048>

8. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative Stress during HIV Infection: Mechanisms and Consequences. *Oxidative Medicine and Cellular Longevity*. 2016;2016(1). doi:10.1155/2016/8910396
9. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative Stress during HIV Infection: Mechanisms and Consequences. *Oxidative Medicine and Cellular Longevity*. 2016;2016(1). doi:10.1155/2016/8910396
10. Schank M, Zhao J, Moorman JP, Yao ZQ. The impact of HIV- and ART-Induced Mitochondrial Dysfunction in cellular senescence and aging. *Cells*. 2021;10(1):174. doi:10.3390/cells10010174
11. Freeman ML, Shive CL, Nguyen TP, Younes SA, Panigrahi S, Lederman MM. Cytokines and T-Cell homeostasis in HIV infection. *The Journal of Infectious Diseases*. 2016;214(suppl 2):S51–7. doi:10.1093/infdis/jiw287
12. Liu S, Liu J, Wang Y, Deng F, Deng Z. Oxidative stress: signaling pathways, biological functions, and disease. *MedComm*. 2025;6(7). doi:10.1002/mco2.70268
13. Kotsafti A, Scarpa M, Castagliuolo I, Scarpa M. Reactive oxygen species and Antitumor Immunity—From surveillance to evasion. *Cancers*. 2020;12(7):1748. doi:10.3390/cancers12071748
14. Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY, et al. ROS-Induced Mitochondrial Dysfunction in CD4 T Cells from ART-Controlled People Living with HIV. *Viruses*. 2023;15(5):1061. doi:10.3390/v15051061
15. Février M, Dorgham K, Rebollo A. CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. *Viruses*. 2011;3(5):586–612. doi:10.3390/v3050586
16. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative Stress during HIV Infection: Mechanisms and Consequences. *Oxidative Medicine and Cellular Longevity*. 2016;2016(1). doi:10.1155/2016/8910396
17. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative Stress during HIV Infection: Mechanisms and Consequences. *Oxidative Medicine and Cellular Longevity*. 2016;2016(1). doi:10.1155/2016/8910396
18. Mu W, Patankar V, Kitchen S, Zhen A. Examining chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection. *Viruses*. 2024;16(2):219. doi:10.3390/v16020219
19. Mu W, Patankar V, Kitchen S, Zhen A. Examining chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection. *Viruses*. 2024;16(2):219. doi:10.3390/v16020219
20. Ugwu, CE., Sure, SM., Dike, CC., Okpoga, NA and Egba, SI. Phytochemical and *in vitro* antioxidant activities of methanol leave extract of *Alternanthera basiliana*. *Journal of Pharmacy Research*, 2018; 12(6): 835-839
21. Uroko Robert Ikechukwu., Agbafor Amarachi, Uchenna Oluomachi Nancy, Achi Ngozi Kalu, Egba Simeon Ikechukwu, Nweje-Anyalowu Paul Chukwuemaka and Ngwu Ogochukwu Rita. Evaluation of Antioxidant Activity of Aqueous Extracts of Palm Friuts (*Elaeis guineensis*) *Asian Journal of Biochemistry*, 2017; 12: 49-57
22. Ezenwaji, C.O., Alum, E.U. & Ugwu, O.P.C. Bridging the gap: telemedicine as a solution for HIV care inequities in rural and vulnerable communities. *Int J Equity Health* 24, 205 (2025). <https://doi.org/10.1186/s12939-025-02584-2>
23. Coşkun N, Demir R, Canbolat AA, Saritaş S, Pekdemir B, Bechelany M, et al. Polyphenols as antiviral agents: Their potential against a range of virus types. *Nutrients*. 2025;17(14):2325. doi:10.3390/nu17142325
24. Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. *Oxidative Medicine and Cellular Longevity*. 2022; 2022:1–34. doi:10.1155/2022/8100195
25. Ren Z, Zheng S, Sun Z, Luo Y, Wang Y, Yi P, et al. Resveratrol: molecular mechanisms, health benefits, and potential adverse effects. *MedComm*. 2025;6(6). doi:10.1002/mco2.70252
26. Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. *Preventive Nutrition and Food Science*. 2021;26(3):241–61. doi:10.3746/pnf.2021.26.3.241
27. Medina-García M, Baeza-Morales A, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, Martínez-Espinosa RM, et al. Carotenoids and Their Interaction with the Immune System. *Antioxidants*. 2025;14(9):1111. doi:10.3390/antiox14091111
28. Huey SL, Mehta S. Human immunodeficiency virus and vitamin A. In: CRC Press eBooks. 2018. p. 1–26. doi:10.1201/9781351058193-1
29. Allemailem KS, Almatroudi A, Alharbi HOA, AlSuhaymi N, Alsugoor MH, Aldakheel FM, et al. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. *Biomedicines*. 2024;12(6):1353. doi:10.3390/biomedicines12061353
30. Zahra M, Abrahamse H, George BP. Flavonoids: antioxidant powerhouses and their role in nanomedicine. *Antioxidants*. 2024;13(8):922. doi:10.3390/antiox13080922

31. Liu M, Wang J, Song Z, Pei Y. Regulation mechanism of curcumin mediated inflammatory pathway and its clinical application: a review. *Frontiers in Pharmacology*. 2025;16. doi:10.3389/fphar.2025.1642248

32. Abookleesh FL, Al-Anzi BS, Ullah A. Potential antiviral action of alkaloids. *Molecules*. 2022;27(3):903. doi:10.3390/molecules27030903

33. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. *Food Chemistry X*. 2022;13:100217. doi:10.1016/j.fochx.2022.100217

34. Isaac Edyedu PMA, Ugwu OPC, Ugwu CN, Alum EU, et al. The role of pharmacological interventions in managing urological complications during pregnancy and childbirth: A review. *Medicine*. 2025;104(7):e41381.

35. Alum EU, Ugwu OPC, Obeagu EI, et al. Nutritional care in diabetes mellitus: A comprehensive guide. *Int J Innov Appl Res*. 2023;11(12):16-25.

36. Obeagu EI, Ahmed YA, Obeagu GU, Bunu UO, Ugwu OPC, Alum EU. Biomarkers of breast cancer: Overview. *Int J Curr Res Biol Med*. 2023;1:8-16.

37. Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, et al. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: Advances in targeted delivery and precision therapeutics. *J Nanobiotechnol*. 2025;23:336.

38. Ugwu CN, Ugwu OPC, Alum EU, Eze VH, Basajja M, Ugwu JN, Ogenyi FC, et al. Medical preparedness for bioterrorism and chemical warfare: A public health integration review. *Medicine*. 2025;104(18):e42289.

39. Obeagu EI, Scott GY, Amekpor F, Ugwu OPC, Alum EU. COVID-19 infection and diabetes: A current issue. *Int J Innov Appl Res*. 2023;11(1):25-30.

40. Offor CE, Ugwu OPC, Alum EU. Anti-diabetic effect of ethanol leaf extract of *Allium sativum* on albino rats. *Int J Pharm Med Sci*. 2014;4(1):1-3.

41. Asogwa FC, Okechukwu PCU, Esther UA, Chinedu OE, Nzubechukwu E. Hygienic and sanitary assessment of street food vendors in selected towns of Enugu North District, Nigeria. *Am-Eurasian J Sci Res*. 2015;10(1):22-26.

42. Alum EU, Uti DE, Agah VM, Orji OU, Nkeiru N, et al. Physico-chemical and bacteriological analysis of water used for drinking and domestic purposes in Amaozara Ozizza, Afikpo North, Nigeria. *Niger J Biochem Mol Biol*. 2023;38(1):1-8.

43. Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: Implications for health, disease, and therapeutic interventions. *Medicine*. 2024;103(19):e38088.

44. Ezekwe CI, Uzomba CR, Ugwu OPC. Effect of methanol extract of *Talinum triangulare* on hematology and liver parameters in rats. *Glob J Biotechnol Biochem*. 2013;8(2):51-60.

45. Alum EU, Inya JE, Ugwu OPC, Obeagu EI, Aloke C, Aja PM, Okpata MG, et al. Ethanolic leaf extract of *Datura stramonium* attenuates methotrexate-induced biochemical alterations in Wistar rats. *RPS Pharmacol Rep*. 2023;2(1):1-6.

46. Ugwu OPC, Erisa K, Inyangat R, Obeagu EI, et al. Indigenous medicinal plants for managing diabetes in Uganda: Ethnobotanical and pharmacotherapeutic insights. *INOSR Exp Sci*. 2023;12(2):214-224.

47. Alum EU, Aja W, Ugwu OPC. Vitamin composition of ethanol leaf and seed extracts of *Datura stramonium*. *Avicenna J Med Biochem*. 2023;11(1):92-97.

48. Ezenwaji CO, Alum EU, Ugwu OPC. Digital health in pandemic preparedness and response: Securing global health? *Glob Health Action*. 2024;17(1):2419694.

49. Adonu CC, Ugwu OP, Bawa A, Ossai EC, Nwaka AC. Intrinsic blood coagulation studies in patients with diabetes and hypertension. *Int J Pharm Med Bio Sci*. 2013;2(2):36-45.

50. Offor CE, Ugwu PC, Okechukwu PM, Igwenyi IO. Proximate and phytochemical analyses of *Terminalia catappa* leaves. *Eur J Appl Sci*. 2015;7(1):9-11.

51. Enechi YS, Ugwu OC, Ugwu KK, Ugwu OPC, Omeh N. Evaluation of antinutrient levels of *Ceiba pentandra* leaves. *IJRRPAS*. 2013;3(3):394-400.

52. Alum EU, Uti DE, Ugwu OPC, Alum BN, Edeh FO, Ainebyoona C. Microbiota in cancer development and treatment. *Discov Oncol*. 2025;16(1):646.

53. Asogwa FC, Okoye COB, Ugwu OPC, Edwin N, Alum EU, Egwu CO. Phytochemistry and antimicrobial assay of *Jatropha curcas* extracts. *Eur J Appl Sci*. 2015;7(1):12-16.

54. Enechi OC, Oluka HI, Ugwu PCO. Acute toxicity and ameliorative properties of *Alstonia boonei* leaf extract on diabetic rats. *Afr J Biotechnol*. 2014;13(5).

55. Alum EU, Obeagu EI, Ugwu OPC. Enhancing water, sanitation, and hygiene for diarrhoea control and SDGs: A review. *Medicine*. 2024;103(38):e39578.

56. Odo CE, Nwodo OFC, Joshua PE, Ugwu OPC, Okonkwo CC. Anti-diarrhoeal effect of chloroform-methanol extract of *Persea americana* seeds in rats. *J Pharm Res*. 2013;6(3):331-335.

57. Ugwu OPC, Obeagu EI, Alum EU, Michael M, et al. Effect of ethanol leaf extract of *Chromolaena odorata* on hepatic markers in diabetic rats. *IAA J Appl Sci*. 2023;9(1):46-56.

58. Ibiam UA, Alum EU, Orji OU, Aja PM, Nwamaka EN, Ugwu OPC, et al. Anti-inflammatory effects of *Buchholzia coriacea* leaf extract in arthritic rats. *Indo Am J Pharm Sci.* 2018;5(7):6341-6357.
59. Obeagu EI, Obeagu GU, Odo EO, Alum EU. Nutritional approaches for enhancing immune competence in HIV-positive individuals. *IDOSR J Appl Sci.* 2024;9(1):40-50.
60. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: Gatekeeper of iron in malaria resistance. *Newport Int J Res Med Sci.* 2023;4(2):1-8.
61. Nyamboga TO, Ugwu OPC, Ugwu JN, et al. Biotechnological innovations in soil health management: a systematic review of integrating microbiome engineering, bioinformatics, and sustainable practices. *Cogent Food Agric.* 2025;11(1):2519811.
62. Madu ANB, Alum EU, Aloh HE, Ugwu OPC, Obeagu EI, Uti DE, Egba SI, Ukaidi CUA. The price of progress: Assessing the financial costs of HIV/AIDS management in East Africa. *Medicine.* 2025;104(18):e42300.
63. Alum EU, Ugwu OPC. Beyond pregnancy: Understanding long-term implications of gestational diabetes mellitus. *INOSR Sci Res.* 2024;11(1):63-71.
64. Ugwu OPC, Alum EU, Okon MB, Aja PM, Obeagu EI, Onyeneke EC. Anti-nutritional and GC-MS analysis of ethanol root extract and fractions of *Sphenocentrum jollyanum*. *RPS Pharmacol Pharm Rep.* 2023;2(2):rqad007.
65. Eze VH, Eze CE, Mbabazi A, Ugwu CN, Ugwu PO, Ogenyi CF, Ugwu JN, et al. Qualities and characteristics of a good scientific research writing: Step-by-step approaches. *IAA J Appl Sci.* 2023;9(2):71-76.
66. Igwenyi IO, Nchi PO, Okechukwu UPC, Igwenyi IP, Obasi DC, Edwin N. Nutritional potential of *Azadirachta indica* seeds. *Indo Am J Pharm Sci.* 2017;4(2):477-482.
67. Enechi OC, Oluka IH, Ugwu OPC, Omech YS. Effect of ethanol leaf extract of *Alstonia boonei* on lipid profile of alloxan-induced diabetic rats. *Afr J Biotechnol.* 2013;24.
68. Ugwu OPC. Anti-malaria effect of ethanol extract of *Moringa oleifera* leaves on malaria-induced mice. University of Nigeria Nsukka; 2011:39.
69. Alum EU, Ugwu OPC, Obeagu EI. Nutritional interventions for cervical cancer patients: Beyond conventional therapies. *J Cancer Res Cell Ther.* 2024;8(1):1-6.
70. Obeagu EI, Obeagu GU. Advancements in immune augmentation strategies for HIV patients. *IAA J Biol Sci.* 2024;11(1):1-11.
71. Okechukwu PU, Nzubechukwu E, Ogbanshi ME, Ezeani N, Nworie MO. Effect of ethanol leaf extract of *Jatropha curcas* on chloroform-induced hepatotoxicity in albino rats. *Glob J Biotech Biochem.* 2015;10:11-15.
72. Ilozue NM, Ikezu UP, Okechukwu PCU. Antimicrobial and phytochemical screening of *Persea americana* seed extracts. *IOSR J Pharm Biol Sci.* 2014;9(2):23-25.
73. Onyeze R, Udeh SM, Akachi B, Ugwu OP. Isolation and characterization of fungi associated with spoilage of corn (*Zea mays*). *Int J Pharm Med Biol Sci.* 2013;2(3):86-91.
74. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: The gatekeeper of iron in malaria resistance. *Newport Int J Res Med Sci.* 2023;4:1-8.
75. Obeagu EI, Alum EU, Obeagu GU, Ugwu OPC. Prostate cancer: Review on risk factors. *Eurasian Exp J Public Health.* 2023;4(1):4-7.
76. Offor CE, Okaka ANC, Ogbugo SO, Egwu CO, Okechukwu PC. Effects of ethanol leaf extract of *Pterocarpus santalinoides* on haemoglobin, packed cell volume and platelets. *IOSR J Nurs Health Sci.* 2015;4:108-112, 93.
77. Offor C, Aja PC, Ugwu O, Agbafor KN. Effects of ethanol leaf extract of *Gmelina arborea* on serum proteins in albino rats. *Glob J Environ Res.* 2015;9(1):1-4.
78. Alum EU, Uti DE, Obeagu EI, Ugwu OPC, Alum BN. Cancer's psychosocial aspects: Impact on patient outcomes. *Elite J Med.* 2024;2(6):32-42.
79. Alum EU, Ugwu OPC, Egba SI, Uti DE, Alum BN. Climate variability and malaria transmission: Unravelling the complex relationship. *INOSR Sci Res.* 2024;11(2):16-22.
80. Alum EU, Obeagu EI, Ugwu OPC, Egba SI, EjimUti DE, Ukaidi CUA, et al. Confronting dual challenges: Substance abuse and HIV/AIDS. *Elite J HIV.* 2024;2(5):1-8.

CITE AS: Odile Patrick Thalia (2026). Antioxidant Phytochemicals and Immune Modulation in HIV/AIDS: Mechanisms, Evidence, and Clinical Relevance. *IDOSR JOURNAL OF SCIENCE AND TECHNOLOGY* 12(1):7-12. <https://doi.org/10.59298/IDOSR/JST/26/113.712>