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ABSTRACT

Chronic metabolic diseases-particularly type 2 diabetes mellitus (T2DM) and the metabolic syndrome-are major
drivers of contemporary liver morbidity, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH),
fibrosis and cirrhosis. Hepatotoxicity in this context is not a single-pathway event but the outcome of sustained
metabolic overload, maladaptive immune activation, and persistent oxidative stress that together create
hepatocellular injury, organelle dysfunction, and maladaptive remodeling. This review synthesizes current
mechanistic understanding of how hyperglycemia and insulin resistance perturb hepatocyte metabolism, how
innate and adaptive immune responses amplify tissue damage, and how oxidative stress both mediates and
perpetuates injury through mitochondrial dysfunction, lipid peroxidation, and disruption of antioxidant pathways
(e.g., Nrf2). We discuss the role of cytochrome P450 (CYP) enzymes and xenobiotic handling in modifying
susceptibility to drug-induced liver injury (DILI) in patients with metabolic disease, summarize emerging
biomarkers and  mechanistic = readouts, and highlight therapeutic  strategies targeting the
metabolic-immune—oxidative axis. Recognizing the interconnectedness of these processes is essential to improving
diagnosis, stratifying risk for hepatotoxic reactions, and developing targeted interventions for liver protection in
people with chronic metabolic disease.
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INTRODUCTION

The global rise of obesity and type 2 diabetes mellitus has produced a parallel and increasingly concerning surge
in metabolic liver disease[ 17]. Nonalcoholic fatty liver disease, once viewed primarily as a benign accumulation of
hepatic fat, is now recognized as part of a broader spectrum of metabolic dysfunction. While simple steatosis may
remain stable for some individuals, a substantial proportion progress to more severe inflammatory and fibrotic
stages[27]. These advanced forms, collectively represented by nonalcoholic steatohepatitis, reflect a complex
interplay of metabolic stress, immune activation, and oxidative injury rather than lipid excess alone. This evolving
understanding highlights the liver’s central position at the crossroads of nutrient metabolism, endocrine signaling,
and innate immunity[87]. Several interconnected mechanisms drive hepatotoxicity in individuals with metabolic
disease. Persistent hyperglycemia exposes hepatocytes to glucotoxic stress, altering mitochondrial activity and
promoting the formation of reactive oxygen species. Elevated circulating lipids increase hepatic uptake of fatty
acids, some of which become incorporated into harmful lipid intermediates that trigger cellular dysfunction[4]. At
the same time, adipose tissue inflammation and altered gut-liver interactions stimulate immune pathways that
further intensify hepatic injury. The liver’s antioxidant defenses, although robust under physiological conditions,
are often overwhelmed in this setting, allowing oxidative stress to accumulate and perpetuate damage[5].

These disturbances do not act in isolation but reinforce one another, generating a self-sustaining cycle of
hepatocellular stress, inflammatory signaling, and impaired repair capacity[6]. As a result, individuals with
metabolic disease are more susceptible not only to progressive liver injury but also to environmental and
pharmacologic insults that may otherwise be well tolerated. Understanding how these metabolic, immunologic,
and redox pathways converge is essential for improving early detection, refining risk stratification, and designing
targeted therapeutic strategies[7]. As obesity and diabetes continue to rise globally, a comprehensive grasp of
these mechanisms is critical for preventing future liver-related morbidity and improving long-term outcomes.
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Lipid overload, insulin resistance, and lipotoxicity

A major contributor to hepatotoxicity in metabolic disease is the excessive flux of fatty acids to the liver[87]. In
states of insulin resistance, adipose tissue becomes hyperactive in breaking down stored fats, resulting in elevated
levels of free fatty acids in the bloodstream. The liver, attempting to manage this overload, increases uptake and
conversion of these fatty acids into triglycerides[97. While this initially serves as a protective buffer, the capacity
for safe storage is limited. Once this threshold is exceeded, harmful lipid intermediates begin to accumulate.
Molecules such as diacylglycerols, ceramides, and free cholesterol disrupt cellular signaling pathways, interfere
with insulin action, and induce mitochondrial stress[107]. These toxic lipids can initiate cell death programs and
stimulate inflammatory responses, marking the transition from simple fat accumulation to true liver injury[117.
This metabolic stress also heightens oxidative damage and enhances the expression of inflammatory mediators,
reinforcing a cycle that gradually worsens liver function[ 127].

Organellar stress: ER and mitochondria

Chronic nutrient excess places considerable pressure on intracellular organelles. The endoplasmic reticulum
becomes overloaded with demands for protein and lipid synthesis, triggering stress responses designed to restore
balance[187]. When this stress becomes excessive, the protective response shifts toward pathways that promote
inflammation and programmed cell death. Mitochondria, central to energy production and fatty acid oxidation,
likewise become impaired as they struggle to process the surplus of nutrients[147]. Reduced efficiency in energy
generation and increased production of reactive oxygen species weaken the cell's defenses. These disturbances
make hepatocytes more susceptible to injury from infections, drugs, and additional metabolic stressors, reinforcing
the path toward progressive liver damage[ 157

Oxidative stress: mediator and perpetuator of hepatotoxicity

Sources and consequences of ROS in the diseased liver

Oxidative stress is one of the most significant and persistent drivers of liver injury in chronic metabolic
disease[167]. In the metabolically overloaded liver, reactive oxygen species are generated from multiple
intracellular sites. Mitochondria, which are responsible for energy production and fatty acid oxidation, become
overwhelmed by excessive nutrient flux. As their capacity to oxidize fatty acids declines, they begin to leak
electrons that react with oxygen, forming reactive oxygen species[17]. The endoplasmic reticulum also
contributes to oxidative stress when it becomes overburdened with protein folding demands. During this process,
oxidoreductase enzymes generate reactive oxygen species as by-products, which accumulate when the system is
dysregulated[ 187]. Peroxisomes, which normally assist in lipid metabolism, become dysfunctional in the presence
of chronic metabolic stress and release additional reactive oxygen species. Enzymatic reactions mediated by
cytochrome P450, particularly under conditions of increased drug load or toxin exposure, further add to oxidative
pressure[197. Collectively, these sources contribute to a sustained environment of oxidative imbalance. The
consequences of these reactive species are wide-ranging. One major outcome is lipid peroxidation, through which
reactive oxygen species attack cellular membranes and generate harmful aldehydes such as malondialdehyde and
4-hydroxynonenal[207. These aldehydes can form adducts with proteins, enzymes, and DNA, impairing normal
cellular function and initiating inflammatory signaling cascades. Persistent oxidative stress disrupts metabolic
pathways, triggers cell death mechanisms, and directly injures hepatocytes[217]. In addition, oxidative stress
modifies immune cell behavior, promoting a shift toward a chronic inflammatory state that perpetuates tissue
injury. Over time, this cycle of oxidative damage and inflammation contributes substantially to the progression of
metabolic liver disease[227].

Antioxidant defenses and Nrf2 signaling

To counteract these damaging processes, the liver depends on an intricate network of antioxidant defenses. Nrf2, a
transcription factor that orchestrates the expression of numerous protective genes, plays a central role in
maintaining redox balance[237. Under normal conditions, Nrf2 remains inactive, but in the presence of oxidative
stress it becomes activated and translocates to the nucleus. There, it stimulates production of
glutathione-generating enzymes, heme oxygenase-1, and other detoxifying proteins that help neutralize reactive
oxygen species[247]. However, in metabolic disease, this antioxidant defense system often becomes inadequate.
Chronic hyperglycemia, lipid overload, and inflammatory signaling can dampen Nrf2 activation or overwhelm its
protective capacity. As a result, hepatocytes become increasingly vulnerable to oxidative damage, allowing reactive
oxygen species to exert greater harm[257]. This weakened antioxidant response also reduces the liver’s resilience
against medications or environmental toxins, increasing the risk of drug-induced liver injury[267.

Drug metabolism, CYP450, and altered susceptibility to DILI

The interaction between metabolic disease and drug metabolism further complicates the hepatotoxic landscape.
Individuals with diabetes or fatty liver disease frequently use multiple medications, and their livers undergo
structural and functional changes that influence how drugs are processed[27]. Cytochrome P450 enzymes, which
are responsible for metabolizing many drugs and xenobiotics, can exhibit altered activity in fatty or inflamed liver
tissue. Some isoforms may be upregulated, increasing the formation of reactive metabolites, while others may be
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suppressed, reducing detoxification capacity. These shifts can amplify the production of reactive oxygen species
during drug metabolism, compounding oxidative stress in an already compromised liver[287. As a result,
individuals with metabolic disorders may have a heightened susceptibility to drug-induced liver injury, even at
standard therapeutic doses. Reduced antioxidant capacity further increases this vulnerability, making careful
monitoring and dose adjustment essential[297. Clinicians must consider these metabolic and biochemical
alterations when prescribing medications, particularly those known to carry hepatotoxic risks. The convergence of
oxidative stress, impaired detoxification, and metabolic dysfunction underscores the importance of individualized
therapeutic strategies in this high-risk population[[307.
Therapeutic strategies and research directions
Metabolic control and lifestyle
Improving underlying metabolic health remains the foundation of hepatoprotective therapy in chronic metabolic
disease[317]. Even modest weight loss is associated with significant reductions in hepatic fat accumulation,
decreased inflammation, and improved insulin sensitivity, all of which weaken the drivers of oxidative and
immune-mediated injury. Dietary interventions that lower caloric intake, reduce refined carbohydrates, and
promote balanced nutrient composition are central to this effort[327]. Regular physical activity enhances
mitochondrial efficiency, stimulates fatty acid oxidation, and improves systemic glucose handling. Achieving better
glycemic control reduces chronic glucotoxicity and minimizes oxidative burden on hepatocytes[337. Together,
these lifestyle-centered approaches form a first-line strategy capable of slowing or reversing early liver injury in
many individuals.
Targeting oxidative stress and mitochondrial health
Given the central role of oxidative stress in liver injury, therapeutic strategies aimed at enhancing antioxidant
defenses or stabilizing mitochondria are a major focus of ongoing research. Pharmacologic antioxidants, such as
N-acetylcysteine, may replenish glutathione stores in selected clinical scenarios, while experimental compounds
designed to activate Nrf2 signaling seek to strengthen endogenous antioxidant pathways[347]. Parallel efforts are
exploring agents that promote mitochondrial quality control through enhanced mitophagy or that support
efficient beta-oxidation. While preclinical findings are encouraging, well-controlled clinical trials are needed to
determine their long-term benefits and safety profiles[357].
Modulating immune responses
Chronic inflammation is a major driver of hepatocellular damage, making immune-targeted therapies an important
area of investigation[867]. Agents that block chemokine receptors involved in the recruitment of inflammatory
cells, or biologics that inhibit cytokines such as interleukin-1 beta, may help reduce persistent liver inflammation.
Future strategies emphasize precision approaches that adjust immune activity without broadly suppressing host
defenses[377]. Moditying macrophage polarization or regulating pathogenic T cell responses may provide more
targeted and sustainable benefits.
Personalized medicine and drug safety
As understanding of metabolic liver disease deepens, personalized approaches to predicting hepatotoxic risk are
becoming feasible. Genomic, metabolomic, and microbiome-derived data may help identify individuals who
metabolize drugs differently or possess heightened vulnerability to oxidative or inflammatory injury[387].
Polymorphisms in drug-metabolizing enzymes, particularly within the cytochrome P450 family, can influence how
medications are processed and the likelihood of harmful metabolite formation[397. Incorporating such information
into clinical decision-making offers the potential for safer prescribing, reduced incidence of drug-induced liver
injury, and more effective individualized therapy.
CONCLUSION
Hepatotoxicity in chronic metabolic disease is a multifactorial process in which diabetes-related metabolic stress,
maladaptive immune activation, and oxidative damage intersect to drive liver injury. The bidirectional interactions
among these axes create feed-forward loops that transform metabolic overload into chronic inflammation, cell
death and fibrosis. Clinically, this means patients with T2DM or metabolic syndrome require careful assessment
for liver injury, judicious prescribing, and therapeutic strategies that address metabolism, inflammation and redox
balance simultaneously. Future research should prioritize mechanistic biomarkers that capture the triad’s activity,
and clinical trials testing combination therapies that restore metabolic homeostasis while attenuating immune and
oxidative drivers of hepatotoxicity.
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