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ABSTRACT 
Benign prostatic hyperplasia (BPH) is a highly prevalent condition in aging men, historically attributed to 
androgenic and hormonal imbalances. However, mounting evidence supports a central role for the 
immune–prostate axis in its development. Chronic inflammation, immune-cell infiltration (e.g., T cells, 
macrophages), and sustained cytokine release contribute to a pro-proliferative microenvironment in the prostate. 
At the same time, oxidative stress (OS)-driven by excessive reactive oxygen species (ROS) from immune cells and 
metabolic dysregulation fosters tissue damage, DNA instability, and stromal-epithelial proliferation. The synergy 

of inflammation and OS disrupts apoptosis, enhances proliferation via MAPK, NF- κB, and STAT3 pathways, and 
triggers fibrotic remodeling. Emerging studies implicate deregulated antioxidant defense (e.g., diminished Nrf2 
activity), autophagy/ferroptosis imbalance, and immune-mediated signaling in the stromal expansion 
characteristic of BPH. This review synthesizes current mechanistic knowledge of the immune–prostate axis in 
BPH pathogenesis, highlights key molecular mediators, and discusses potential therapeutic strategies targeting 
inflammation and oxidative stress to complement conventional treatments. 
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INTRODUCTION 

Benign prostatic hyperplasia (BPH) is a prevalent urological condition, affecting a substantial proportion of men 
over 50 years of age and representing a major contributor to lower urinary tract symptoms (LUTS), including 
urinary frequency, nocturia, hesitancy, and weak stream. Traditionally, BPH has been conceptualized as an 
age-related and androgen-driven disease, with dihydrotestosterone (DHT) and other sex steroids promoting 
stromal and epithelial proliferation[1]. However, these classical factors alone fail to account for the considerable 
variability in disease onset, severity, and progression observed across individuals. Notably, some men with similar 
androgenic profiles or age exhibit marked differences in prostate volume and symptom burden, indicating that 
additional mechanisms underlie hyperplastic growth[2]. Recent research has highlighted the critical role of the 
immune–prostate axis in BPH pathogenesis. Histological and molecular studies of hyperplastic prostate tissue 
consistently reveal infiltration by immune cells, particularly T lymphocytes, macrophages, and, to a lesser extent, 
neutrophils and plasma cells[3]. These cells produce a spectrum of proinflammatory cytokines and growth 

factors-including interleukin- 6 (IL-6), interleukin- 8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming 

growth factor- β (TGF-β)-which collectively promote stromal expansion, epithelial proliferation, and 
angiogenesis[4]. Chronic inflammation thus creates a microenvironment that actively supports hyperplasia rather 
than serving as a passive response to tissue enlargement or damage. Concurrently, oxidative stress (OS) emerges 
as a central mediator linking inflammation to cellular proliferation and tissue remodeling[5]. Reactive oxygen 
species (ROS), generated by infiltrating immune cells and metabolically stressed stromal or epithelial cells, 
overwhelm intrinsic antioxidant defenses in the prostate. Excess ROS induces lipid peroxidation, protein 

oxidation, and DNA damage, while also activating pro-survival signaling pathways such as NF- κB, MAPK, and 
PI3K/AKT[6]. These effects not only enhance cell proliferation and resistance to apoptosis but also perpetuate 
immune cell recruitment and inflammatory cytokine production, establishing a self-reinforcing loop that drives 
BPH progression. Understanding the complex interplay between immune dysregulation and oxidative stress is 
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therefore critical for advancing mechanistic models of BPH and developing more effective, targeted therapeutic 
strategies[7]. Integrating insights from immunology, redox biology, and endocrine regulation may allow for 
precision interventions that modulate inflammation, restore antioxidant capacity, and limit hyperplastic growth, 
ultimately improving clinical outcomes for men suffering from this highly prevalent condition[8]. 
2. Immune Infiltration and Inflammatory Mediators in BPH 
2.1 Immune Cell Profiles in BPH 
Histopathological studies of benign prostatic hyperplasia consistently reveal significant immune cell infiltration 
within both stromal and glandular compartments[9]. The infiltrates are predominantly composed of T 
lymphocytes, with CD8+ T cells concentrated in periglandular regions and CD4+ T cells more abundant in the 
stromal matrix[10]. Macrophages form another substantial component of this infiltrate, contributing to local 
cytokine production and reactive oxygen species generation. Less frequently, neutrophils and plasma cells are 
observed, often in regions exhibiting epithelial disruption or microtrauma[11]. The density and composition of 
these immune cells have been correlated with prostate volume and severity of lower urinary tract symptoms, 
suggesting that inflammation is not merely a secondary phenomenon but actively contributes to tissue remodeling 
and hyperplastic growth[12]. In addition, immune cell infiltration can vary based on patient age, comorbidities, 
and prior exposure to urinary tract infections, highlighting the multifactorial triggers of immune activation in the 
prostate. 
2.2 Cytokines and Growth Factors Driving Hyperplasia 
The infiltrating immune cells secrete a variety of cytokines and growth factors that establish a pro-proliferative 

and anti-apoptotic microenvironment[13]. Key mediators include interleukin-6 (IL-6), tumor necrosis factor-α 

(TNF-α), interleukin-8 (IL-8), and transforming growth factor-β (TGF-β). IL-8, produced both by stromal and 
epithelial cells, functions in autocrine and paracrine modes to stimulate cellular proliferation and 

angiogenesis[14]. TNF-α and IL-6 further potentiate inflammatory signaling via NF-κB and STAT3 pathways, 
enhancing stromal expansion and epithelial hyperplasia. Chronic inflammation may be initiated or exacerbated by 
subclinical bacterial infections, urinary reflux, mechanical microtrauma, or autoimmune reactions against exposed 
self-antigens[15]. Over time, sustained cytokine production promotes extracellular matrix deposition, 
angiogenesis, and nodular formation, characteristic features of BPH progression. 
3. Oxidative Stress in the Prostate: Sources and Consequences 
3.1 Origins of ROS in Prostatic Tissue 
Reactive oxygen species (ROS) in the prostate are produced from multiple converging sources[16]. Activated 
macrophages and neutrophils generate superoxide, nitric oxide, and other free radicals as part of the inflammatory 
response. Aging prostate cells also contribute via mitochondrial dysfunction, where electron transport chain 
inefficiencies lead to superoxide leakage[17]. NADPH oxidases, particularly NOX4, are upregulated in 
hyperplastic tissue and further enhance ROS production under inflammatory stimulation. Experimental models 
demonstrate that NOX4 overexpression correlates with increased oxidative DNA damage, stromal cell 
proliferation, and enlarged prostate volume[18]. 
3.2 Oxidative Damage and Proliferative Signaling 
Excess ROS damages cellular macromolecules, including lipids, proteins, and nucleic acids[19]. Oxidative DNA 

lesions, such as 8-hydroxy-2′-deoxyguanosine, are elevated in BPH tissue and correlate with both histological 
severity and prostate size[20]. ROS simultaneously act as signaling molecules, activating MAPK (ERK), 

PI3K/AKT, and NF-κB pathways, which promote cell survival, proliferation, and resistance to apoptosis[21]. 
This dual role of ROS—as both damaging agents and intracellular messengers-creates a microenvironment that 
favors hyperplastic growth while perpetuating immune activation. 
3.3 Impaired Antioxidant Defenses 
In BPH, antioxidant defense systems are compromised[22]. Key enzymes, including superoxide dismutase, 
glutathione peroxidase, and catalase, exhibit diminished activity in hyperplastic tissue. Chronic inflammation 
suppresses nuclear factor erythroid 2–related factor 2 (Nrf2), a master regulator of cellular antioxidant 
responses[23]. Reduced Nrf2 activity diminishes transcription of protective enzymes, weakening the prostate’s 
capacity to neutralize ROS. This deficit establishes a vicious cycle in which oxidative stress amplifies 
inflammation, cytokine production, and stromal-epithelial proliferation, driving further hyperplasia[24]. 
4. Emerging Molecular Mediators: Nrf2, Autophagy, and Ferroptosis 
4.1 Role of Nrf2 in Macrophage Regulation 
Nuclear factor erythroid 2–related factor 2 (Nrf2) is increasingly recognized as a central regulator of oxidative 
stress and immune responses within the prostate[25]. In the context of BPH, Nrf2 activity in macrophages 
modulates their phenotype and functional output. Activation of Nrf2 promotes an anti-inflammatory, 

antioxidant-rich state, suppressing the production of proinflammatory cytokines such as TNF-α, IL-6, and IL-1β, 
while upregulating genes involved in reactive oxygen species detoxification, including heme oxygenase-1 (HO-1), 
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glutathione peroxidase, and superoxide dismutase[26]. This dual action restrains stromal proliferation and 
mitigates epithelial hyperplasia. Conversely, loss or suppression of Nrf2 signaling-observed in aged or 
metabolically stressed prostate tissue-enhances macrophage proinflammatory polarization, increases ROS 
production, and perpetuates oxidative injury, contributing directly to the progression of BPH[27]. Nrf2 thus 
represents a critical checkpoint in the immune–prostate axis, linking redox regulation to tissue remodeling and 
hyperplastic growth. 
4.2 Autophagy, Ferroptosis, and Cellular Homeostasis 
Autophagy and ferroptosis are emerging as pivotal mechanisms governing cellular homeostasis and redox balance 
in BPH[28]. Autophagy, particularly mitophagy, facilitates the removal of damaged mitochondria and excess iron, 
reducing ROS accumulation and lipid peroxidation[29]. Dysregulation of autophagic pathways in hyperplastic 
prostate tissue results in the accumulation of damaged organelles and reactive intermediates, promoting cellular 
stress and pyroptotic death via NLRP3 inflammasome activation[30]. Elevated expression of mitochondrial 
antioxidant proteins, such as peroxiredoxin 3 (PRDX3), represents a compensatory response; however, persistent 
oxidative challenges can overwhelm these protective mechanisms[31]. Ferroptosis, an iron-dependent form of 
regulated cell death characterized by lipid peroxidation, is similarly implicated. In BPH, abnormal ferroptotic 
signaling may drive selective stromal cell survival, exacerbate inflammation, and disrupt local immune responses, 
creating conditions that favor hyperplasia and nodular growth[32]. 
5. Metabolic and Systemic Contributors to the Immune-Prostate Axis 
Metabolic disorders-including obesity, insulin resistance, and components of metabolic syndrome-intensify the 
immune–prostate axis and exacerbate BPH progression[33]. High-fat diet-induced BPH models demonstrate 

upregulation of STAT3 and NF-κB signaling, increased expression of COX-2 and inducible nitric oxide synthase 
(iNOS), and elevated proinflammatory cytokines, all of which amplify oxidative stress[34]. These systemic 
metabolic stressors not only enhance ROS generation within the prostate but also suppress Nrf2-mediated 
antioxidant defenses, reducing the tissue’s ability to counteract oxidative damage. Consequently, a 
pro-proliferative, anti-apoptotic microenvironment is established, characterized by stromal expansion, epithelial 
hyperplasia, and extracellular matrix remodeling[35]. Moreover, metabolic dysregulation can exacerbate immune 
cell infiltration, cytokine release, and mitochondrial dysfunction, creating a feed-forward loop that integrates 
systemic metabolic stress with local immune–oxidative signaling. Together, these pathways underscore the 
multifactorial nature of BPH pathogenesis, highlighting the interplay between systemic metabolism, local 
inflammation, and redox imbalance in driving prostate enlargement and lower urinary tract symptoms[36]. 

CONCLUSION 
Benign prostatic hyperplasia should no longer be viewed solely as a hormone-driven disease. The 
immune–prostate axis-mediated by chronic inflammation, immune cell infiltration, oxidative stress, and 
dysregulated redox signaling-plays a defining role in its pathogenesis. Immune-derived ROS, cytokines, and 
growth factors converge to create a microenvironment that promotes hyperplasia, fibrosis, and resistance to cell 
death. Dysregulation of antioxidant defenses, including Nrf2 suppression and impaired autophagy, amplifies this 
process. Recognizing the centrality of immune–oxidative interactions opens new avenues for therapy, including 
antioxidant and anti-inflammatory strategies tailored to the aging, metabolically challenged prostate. Bridging 
basic mechanistic research with translational clinical studies will be key to unlocking these opportunities and 
improving outcomes for men with BPH. 
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