

Neurotoxicity and Diabetes: Mechanistic Insights into Oxidative Stress Mediated Neuronal Damage and Potential Neuroprotective Interventions

Kato Jumba K.

Faculty of Science and Technology Kampala International University Uganda

ABSTRACT

Diabetes mellitus is associated with accelerated neuronal injury manifesting as diabetic peripheral neuropathy, cognitive impairment, and heightened risk of neurodegenerative disease. A large body of evidence implicates oxidative stress—the imbalance between production of reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses a central mediator linking hyperglycaemia, dyslipidaemia, and chronic inflammation to neuronal dysfunction. Hyperglycaemia-driven metabolic pathways (polyol flux, advanced glycation end-products, protein kinase C activation, hexosamine pathway), mitochondrial overload, NADPH oxidase activation, and inflammation converge on excessive ROS/RNS generation, which in turn damages neuronal macromolecules, perturbs ion homeostasis, impairs axonal transport and mitochondrial dynamics, and triggers neuroinflammation. Translational research has explored a range of neuroprotective strategies tight metabolic control, repurposed antidiabetic drugs with pleiotropic antioxidant effects, nutraceutical and polyphenol interventions, Nrf2 pathway activators, mitochondria-targeted antioxidants, and novel drug-delivery systems—to interrupt the oxidative cascade. While preclinical studies show consistent neuroprotection by redox-targeted interventions, clinical translation has been mixed due to heterogeneity in patient populations, timing of intervention, bioavailability of compounds, and limited biomarker-guided stratification. Future progress requires biomarker-driven trials, mitochondrial- and blood-brain-barrier-targeted delivery, and combination therapies that preserve physiological ROS signalling while preventing pathological oxidative damage. This review synthesizes current mechanistic insights into oxidative stress-mediated neurotoxicity in diabetes and evaluates the evidence and potential of neuroprotective interventions.

Keywords: Diabetes, oxidative stress, neurotoxicity, neuroprotection, mitochondria

INTRODUCTION

Diabetes mellitus is a global metabolic disorder that profoundly affects both the peripheral and central nervous systems' function. Patients with diabetes experience a high incidence of diabetic peripheral neuropathy (DPN), which manifests as chronic pain, numbness, paresthesia, and an increased risk of foot ulceration and gait instability [1]. Beyond peripheral nerves, diabetes is increasingly associated with central nervous system complications, including cognitive impairment, accelerated brain aging, and elevated risk for dementia and Alzheimer's disease [2]. These neurological sequelae not only compromise quality of life but also significantly increase morbidity and healthcare burden. A central pathological mechanism linking diabetes to neuronal injury is oxidative stress, defined as an imbalance between reactive oxygen and nitrogen species (ROS/RNS) production and endogenous antioxidant defenses [3]. Chronic hyperglycaemia, insulin resistance, dyslipidaemia, and systemic low-grade inflammation converge to promote persistent ROS/RNS generation [4]. At the same time, key antioxidant systems—including superoxide dismutases, catalase, glutathione peroxidase, and glutathione pools—are impaired or depleted in diabetic tissues, creating a pro-oxidant environment [5]. This redox imbalance damages neuronal lipids, proteins, and nucleic acids, alters membrane integrity, disrupts intracellular signaling, and induces mitochondrial dysfunction. These effects collectively compromise neuronal survival, axonal transport, and synaptic function. The deleterious impact of oxidative stress on neurons extends to multiple cellular compartments. Mitochondria, which are highly metabolically active in neurons, are particularly vulnerable. Oxidative damage to mitochondrial DNA and respiratory chain complexes impairs ATP production, generating further ROS and establishing a self-propagating cycle of injury [6]. In addition, chronic oxidative stress activates inflammatory signaling pathways and glial cells,

which release cytokines and secondary ROS/RNS, amplifying neural damage [7]. Endothelial cells and pericytes in the neurovascular unit are also affected, impairing blood–nerve and blood–brain barrier integrity and facilitating infiltration of inflammatory mediators [7]. Understanding these oxidative mechanisms is critical for developing neuroprotective interventions in diabetes. Therapeutic strategies that restore redox homeostasis have the potential to prevent or mitigate peripheral and central neuronal injury, preserve cognitive function, and improve quality of life. Current research emphasizes the importance of targeting mitochondrial dysfunction, enhancing endogenous antioxidant pathways, and modulating inflammatory responses. Lifestyle interventions such as optimized glycaemic control, exercise, and dietary modulation are fundamental but often insufficient, necessitating adjunct pharmacological and nutraceutical approaches. Emerging evidence from preclinical and early clinical studies supports the efficacy of such interventions, although translation to broad clinical practice remains challenging due to patient heterogeneity and variability in oxidative stress burden.

2. Sources of ROS/RNS in Diabetes and How They Target Neurons

Multiple interconnected biochemical pathways drive ROS/RNS generation in diabetic states.

Mitochondrial overload occurs when excess glucose and fatty acid oxidation increases electron donors (NADH and FADH₂), resulting in electron leakage at complexes I and III of the electron transport chain and elevated superoxide production [8]. This ROS accumulation damages mitochondrial DNA and respiratory proteins, establishing a feedback loop that amplifies oxidative injury. NADPH oxidases (NOX) are activated by hyperglycaemia and pro-inflammatory cytokines in neurons, glial cells, and vascular endothelium, producing bursts of superoxide that exacerbate neuronal oxidative stress [9]. The polyol pathway contributes to redox imbalance by consuming NADPH to convert glucose into sorbitol, reducing availability of this cofactor for glutathione regeneration and weakening antioxidant defenses [10]. Advanced glycation end-products (AGEs) interact with the receptor for AGEs (RAGE) on neurons, microglia, and endothelial cells, activating NF-κB and NOX-mediated pro-oxidant and pro-inflammatory cascades [11]. Nitrosative stress arises from inducible nitric oxide synthase (iNOS) overactivity in inflamed neural tissue, generating nitric oxide that reacts with superoxide to form peroxynitrite, a highly reactive species that damages proteins, lipids, and DNA [12].

These ROS and RNS converge to injure neuronal axons and soma through multiple mechanisms: oxidation of lipids and proteins, disruption of ion channel function, impairment of axonal transport, and mitochondrial dysfunction [13]. Long peripheral nerves are particularly susceptible due to their high metabolic demands. Furthermore, oxidative injury to endothelial cells and pericytes compromises the neurovascular unit, weakening the blood–nerve and blood–brain barriers, reducing perfusion, and facilitating infiltration of inflammatory cells, which further exacerbate neuronal damage [14]. This complex interplay of metabolic, oxidative, and inflammatory pathways underlies the widespread neurotoxicity observed in diabetes, providing a mechanistic rationale for interventions targeting oxidative stress and its downstream effects.

3. Cellular and Molecular Consequences of Oxidative Neuronal Injury

Oxidative stress exerts profound effects on neurons and glial cells through multiple, interrelated mechanisms that compromise structural integrity, cellular signaling, and functional performance. Mitochondrial dysfunction is a primary target: reactive oxygen species damage mitochondrial DNA and proteins, impairing electron transport chain function and uncoupling oxidative phosphorylation. The resulting reduction in ATP production is particularly detrimental to neurons, which rely on sustained high-energy flux for ion pumping, synaptic transmission, and axonal transport [15]. Mitochondrial impairment also increases further ROS generation, establishing a self-perpetuating cycle of injury [16].

Impaired axonal transport and cytoskeletal damage are critical downstream effects. Oxidative modification of motor proteins such as kinesin and dynein, along with cytoskeletal components including tubulin and neurofilaments, slows the trafficking of mitochondria, vesicles, and signaling molecules along axons [17]. Distal axonal degeneration emerges as a hallmark of length-dependent neuropathy, explaining why long peripheral nerves are often the earliest and most severely affected in diabetes [18].

Excitotoxicity and calcium dysregulation further exacerbate neuronal injury [19]. Oxidative stress impairs glutamate uptake and modulates receptor activity, resulting in excessive excitatory signaling [20]. Intracellular calcium overload activates proteases, phospholipases, and endonucleases, compounding structural damage to membranes, cytoskeleton, and organelles [21]. This dysregulation also affects synaptic plasticity and neurotransmitter release, linking cellular damage to functional deficits.

DNA damage and poly (ADP-ribose) polymerase (PARP) overactivation represent additional molecular consequences [22]. Oxidative lesions in nuclear and mitochondrial DNA activate PARP, which consumes NAD⁺ and ATP in attempts to repair damage [23]. Persistent overactivation leads to energetic collapse and triggers programmed cell death pathways, including apoptosis and parthanatos, particularly in metabolically stressed neurons [24].

Neuroinflammation is tightly intertwined with oxidative stress. Microglia, the resident immune cells of the central nervous system, become primed toward pro-inflammatory phenotypes under oxidative conditions. Activated

microglia release cytokines, ROS, and reactive nitrogen species, establishing a feed-forward loop that amplifies neuronal injury and propagates inflammatory signaling across neural networks [25]. Astrocytes and oligodendrocytes also exhibit functional impairment, contributing to reduced support for axons, myelin instability, and further metabolic vulnerability [26].

Synaptic dysfunction and cognitive deficits emerge as higher-order consequences of these cellular and molecular insults. Oxidative modification of synaptic proteins, neurotransmitter receptors, and signaling pathways disrupts long-term potentiation and synaptic plasticity, which underlies learning and memory [27]. Clinically, these processes manifest as cognitive impairment, slowed information processing, and increased susceptibility to neurodegenerative disorders in individuals with diabetes.

Collectively, these mechanisms operate across multiple scales—from redox-sensitive signaling pathways at the molecular level to conduction deficits in peripheral nerves and cognitive decline in the central nervous system. The convergence of mitochondrial dysfunction, cytoskeletal impairment, excitotoxicity, DNA damage, and neuroinflammation explains the heterogeneity and severity of diabetic neuroclinical phenotypes. Understanding these interconnected pathways is crucial for the development of targeted neuroprotective strategies aimed at mitigating oxidative neuronal injury and preserving both peripheral and central nervous system function.

4. Biomarkers and Experimental Models

Accurate assessment of oxidative neuronal injury requires both direct and indirect biomarkers. Lipid peroxidation products such as F2-isoprostanes and 4-hydroxynonenal reflect oxidative damage to cellular membranes [28]. Protein carbonyls and nitrotyrosine indicate oxidation and nitration of structural and enzymatic proteins, while DNA oxidation markers, including 8-hydroxy-2'-deoxyguanosine (8-OHdG), track genomic and mitochondrial damage [29]. Redox status can be quantified via ratios of reduced to oxidized glutathione (GSH:GSSG) and activities of key antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase [30].

Functional and structural correlates are provided by neurophysiologic tests, including nerve conduction studies, electromyography, and assessments of sensory thresholds. Histopathological evaluation of skin and sural nerve biopsies allows direct visualization of axonal degeneration and myelin pathology [31]. Advanced neuroimaging techniques, including magnetic resonance spectroscopy and diffusion tensor imaging, provide *in vivo* assessment of neural integrity and oxidative metabolic changes.

Experimental models have been indispensable in elucidating mechanisms of oxidative neurotoxicity and evaluating potential interventions. Streptozotocin-induced diabetic rodents replicate hyperglycaemia-driven neuropathic features, while high-fat diet and insulin resistance models mimic metabolic dysfunction in type 2 diabetes [32]. Transgenic animals allow targeted manipulation of oxidative stress pathways, including NADPH oxidases, mitochondrial enzymes, and antioxidant systems [33]. Despite their utility, translational gaps remain due to species differences, differences in disease progression, and timing of intervention, highlighting the need for careful extrapolation to human clinical contexts.

5. Neuroprotective Strategies: Mechanisms and Evidence

Given oxidative stress's centrality, redox-focused neuroprotection spans several complementary approaches. Metabolic control and lifestyle: Tight glycaemic control, weight reduction and exercise reduce substrate-driven ROS production, improve mitochondrial dynamics and lower inflammation [34]. Clinical data show that good metabolic control lowers incidence and progression of DPN and may slow cognitive decline [35]. Repurposed antidiabetic drugs with neuroprotective effects: Metformin, GLP-1 receptor agonists and SGLT2 inhibitors exhibit pleiotropic benefits—mitigating mitochondrial dysfunction, lowering inflammation and reducing oxidative stress—shown in preclinical and emerging clinical studies to improve neural outcomes [36]. Antioxidant nutraceuticals and polyphenols: Compounds such as resveratrol, curcumin, epigallocatechin gallate and flavonoids reduce ROS, activate Nrf2-mediated antioxidant responses, and attenuate microglial activation [37]. Preclinical models show preservation of nerve structure and function; clinical trials demonstrate improved oxidative biomarkers and symptomatic relief in some cohorts, though heterogeneity and bioavailability limitations temper conclusions. [5] Nrf2 activators and endogenous pathway enhancers: Pharmacologic activation of Nrf2 boosts transcription of glutathione synthesis and phase II detox enzymes, offering broad cytoprotection [38]. Early-stage compounds and natural activators (sulforaphane, bardoxolone-like agents) show promise but require careful safety evaluation. Mitochondria-targeted antioxidants and delivery systems: Molecules designed to accumulate in mitochondria (e.g., mitoQ, SS peptides) have succeeded in reducing mitochondrial ROS and improving nerve function in animal models [39]. Nanoparticle-based delivery and blood–brain-barrier–permeable formulations are active areas to improve CNS targeting and bioavailability [6,40].

Anti-inflammatory strategies: Targeting microglial activation, cytokine signaling (IL-1 β , TNF- α) and PARP pathways can blunt the oxidative–inflammatory feedback loop. Combination therapies that simultaneously reduce oxidative burden and inflammation show additive benefits in preclinical studies [41]. Symptom-directed and regenerative approaches: Neurotrophic factors, Schwann cell support, and therapies that enhance axonal

regeneration (e.g., growth factor delivery, cell therapies) are being tested alongside antioxidant strategies to restore function rather than solely halting degeneration [42].

CONCLUSION

Oxidative stress is a central mechanistic nexus linking metabolic derangements in diabetes to neuronal injury. The oxidative cascade damages mitochondria, perturbs ion homeostasis and axonal transport, and fuels neuroinflammation-collectively leading to peripheral neuropathy and cognitive dysfunction. Neuroprotective strategies that target redox imbalance-when coupled with improved metabolic control, targeted delivery, and biomarker-driven patient selection-offer realistic promise for mitigating diabetic neurotoxicity. Realizing that promise will require rigorous translational pipelines, precision clinical trials, and therapies that preserve physiological ROS-dependent signalling while preventing pathological oxidative damage.

REFERENCES

1. Jensen TS. The pathogenesis of painful diabetic neuropathy and clinical presentation. *Diabetes Research and Clinical Practice*. 2023;206:110753. doi:10.1016/j.diabres.2023.110753
2. Ortiz GG, Huerta M, González-Usigli HA, Torres-Sánchez ED, Delgado-Lara DL, Pacheco-Moises FP, et al. Cognitive disorder and dementia in type 2 diabetes mellitus. *World Journal of Diabetes*. 2022;13(4):319–37. doi:10.4239/wjd.v13.i4.319
3. Uti DE, Atangwho IJ, Alum EU, Egba SI, Ugwu OPC, Ikechukwu GC. Natural Antidiabetic Agents: Current Evidence and Development Pathways from Medicinal Plants to Clinical use. *Natural Product Communications*. 2025;20(3). doi:10.1177/1934578x251323393
4. Ogugua Victor Nwadiogbu., Agu Obiora Uroko., Egba, Simeon Ikechukwu and Robert Ikechukwu. Modulation of Blood Glucose Concentration, Lipid Profile and Haematological Parameters in Alloxan Induced Diabetic Rats Using Methanol Extract of *Nauclea latifolia* Root Bark. *Asian Journal of Biological Sciences*, 2017; 10(1): 1-8
5. Ikpozu EN, Offor CE, Igwenyi, I.O, Ibiam, U.A., Obaroh, I.O. et al. RNA-based diagnostic innovations: A new frontier in diabetes diagnosis and management. *Diabetes & Vascular Disease Research*. 2025;22(2). doi:10.1177/14791641251334726
6. Alum, E.U., Uti, D.E. & Offor, C.E. Redox Signaling Disruption and Antioxidants in Toxicology: From Precision Therapy to Potential Hazards. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01846-8>
7. Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V, et al. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. *Acta Pharmaceutica Sinica B*. 2024;15(1):15–34. doi:10.1016/j.apsb.2024.10.004
8. Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. *Antioxidants and Redox Signaling*. 2015;22(17):1563–86. doi:10.1089/ars.2014.6123
9. Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. *Antioxidants*. 2021;10(6):890. doi:10.3390/antiox10060890
10. Yan L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. *Animal Models and Experimental Medicine*. 2018;1(1):7–13. doi:10.1002/ame2.12001
11. Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. *International Journal of Inflammation*. 2013;2013:1–15. doi:10.1155/2013/403460
12. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. *Physiological Reviews*. 2007;87(1):315–424. doi:10.1152/physrev.00029.2006
13. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. *Oxidative Medicine and Cellular Longevity*. 2016;2016(1). doi:10.1155/2016/1245049
14. Kim S, Jung UJ, Kim SR. Role of oxidative stress in Blood–Brain barrier disruption and neurodegenerative diseases. *Antioxidants*. 2024;13(12):1462. doi:10.3390/antiox13121462
15. Krishnamoorthy R, Gatasheh MK, Famurewa AC, Subbarayan S, Vijayalakshmi P, Uti DE. Neuroprotective Potential of Jimson Weed in Methotrexate-Induced Neurotoxicity: Insights into Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms via Modulation of Caspase-3, Interleukin-6, and Tumor Necrosis Factor-Alpha: In Silico. *Endocr Metab Immune Disord Drug Targets*. 2025 Aug 15. doi:10.2174/0118715303350736241220090850.
16. San-Millán I. The key role of mitochondrial function in health and disease. *Antioxidants*. 2023;12(4):782. doi:10.3390/antiox12040782
17. Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. *Europe PMC (PubMed Central)*. 2012. Available from: <https://europepmc.org/articles/pmc3656622>
18. Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. *Neuroscience Letters*. 2015;596:33–50. doi:10.1016/j.neulet.2015.01.048

19. Utu DE, Egba SI, Ugwu OP-C, Aja PM. The Role of Phytochemicals in Age-Related Cognitive Decline: A Natural Solution for Brain Health. *Natural Product Communications*. 2025;20(6). doi:10.1177/1934578X251350761

20. Saidia AR, François F, Casas F, Mechaly I, Venteo S, Veechi JT, et al. Oxidative stress plays an important role in glutamatergic Excitotoxicity-Induced cochlear synaptopathy: Implication for Therapeutic molecules screening. *Antioxidants*. 2024;13(2):149. doi:10.3390/antiox13020149

21. Zampese E, Pizzo P. Intracellular organelles in the saga of Ca^{2+} homeostasis: different molecules for different purposes? *Cellular and Molecular Life Sciences*. 2011;69(7):1077–104. doi:10.1007/s00018-011-0845-9

22. Pacher P, Szabó C. Role of Poly(ADP-Ribose) Polymerase-1 Activation in the Pathogenesis of Diabetic Complications: Endothelial Dysfunction, as a Common Underlying Theme. *Antioxidants and Redox Signaling*. 2005;7(11–12):1568–80. doi:10.1089/ars.2005.7.1568

23. Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, et al. NAD⁺ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. *Molecular Biology of the Cell*. 2019;30(20):2584–97. doi:10.1091/mbc.e18-10-0650

24. De Moura RD, De Mattos PD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. *Genetics and Molecular Biology*. 2024;47(suppl 1). doi:10.1590/1678-4685-gmb-2023-0357

25. Egba, S.I., Ademola C F and Omoruyi L E (2021) Bucholzia coriacea seed extract attenuates mercury induced cerebral and cerebellar oxidative neurotoxicity via NO signalling and suppression of oxidative stress, adenosine deaminase and acetylcholinesterase activities in rats. *Avicenna J Phytomed*. 2022 Jan-Feb;12(1):42–53. doi: 10.22038/AJP.2021.18262. PMID: 35145894; PMCID: PMC8801217.

26. Hu X, Yu G, Liao X, Xiao L. Interactions between astrocytes and oligodendroglia in myelin development and related brain diseases. *Neuroscience Bulletin*. 2022;39(3):541–52. doi:10.1007/s12264-022-00981-z

27. Ogbodo John Onyebuchi, Chinazom Precious Agbo, Ugoci Olivia Njoku, Martins Obinna Oggugofor, Egba Simeon Ikechukwu, Stella Amarachi Ihim, Adaeze Chidiebere Echezona Kenneth Chibuike Brendan, Aman Babanrao Upaganlawar, and Chandrashekhar Devidas Upasani. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions, *Current Aging Science*, 2021; 21:1–25.

28. Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-Nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by Redox proteomics studies. *Antioxidants and Redox Signaling*. 2011;17(11):1590–609. doi:10.1089/ars.2011.4406

29. Şerban M, Toader C, Covache-Busuioac RA. The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration. *International Journal of Molecular Sciences*. 2025;26(15):7498. doi:10.3390/ijms26157498

30. Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). *Molecules*. 2015;20(5):8742–58. doi:10.3390/molecules20058742

31. Weis J, Brandner S, Lammens M, Sommer C, Vallat JM. Processing of nerve biopsies: A practical guide for neuropathologists. *Clinical Neuropathology*. 2011;31(01):7–23. doi:10.5414/np300468

32. Akinlade OM, Owoyele BV, Soladoye AO. Streptozotocin-induced type 1 and 2 diabetes in rodents: a model for studying diabetic cardiac autonomic neuropathy. *African Health Sciences*. 2021;21(2):719–27. doi:10.4314/ahs.v21i2.30

33. Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA damage. *Antioxidants*. 2020;9(11):1142. doi:10.3390/antiox9111142

34. Obasi, D.C., Abba, J.N., Aniokete, U.C., Okoroh, P.N., Akwari, A.A. (2025). Evolving Paradigms in Nutrition Therapy for Diabetes: From Carbohydrate Counting to Precision Diets. *Obesity Medicine*, 2025; 100622. <https://doi.org/10.1016/j.obmed.2025.100622>

35. Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, et al. Diabetic neuropathy: cutting-edge research and future directions. *Signal Transduction and Targeted Therapy*. 2025;10(1). doi:10.1038/s41392-025-02175-1

36. Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, et al. Mitochondria and the repurposing of diabetes drugs for Off-Label health benefits. *International Journal of Molecular Sciences*. 2025;26(1):364. doi:10.3390/ijms26010364

37. Mitaki, N.B., Fasogbon, I.V., Ojiakor, O.V., Makena, W., Ikuomola, E. O., Dangana, R.S., et al. (2025). A systematic review of plant-based therapy for the management of diabetes mellitus in the East Africa community. *Phytomedicine Plus*, 5(1): 100717. <https://doi.org/10.1016/j.phyplu.2024.100717>

38. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. *Progress in Neurobiology*. 2012;100:30–47. doi:10.1016/j.pneurobio.2012.09.003

39. Egba, S Ikechukwu, Okonkwo C Onyinye, Ogbodo J Onyebuchi and Ezech V Nzubechukwu. Neuroprotective Potentials of *Alstonia boonei* extracts on Biochemical Markers of Brain Integrity in Experimental Rats, *Trop J Nat Prod Res*, 2021; 5(6): 1106–1109. doi.org/10.26538/tjnpr/v5i6.21

40. Uti, D.E., Atangwho, I.J., Alum, E.U. *et al.* Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. *Discover Nano* **20**, 70 (2025). <https://doi.org/10.1186/s11671-025-04248-0>

41. Prata C, Maraldi T, Angeloni C. Strategies to Counteract Oxidative Stress and inflammation in Chronic-Degenerative Diseases. *International Journal of Molecular Sciences*. 2022;23(12):6439. doi:10.3390/ijms23126439

42. Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. *Biomedicine & Pharmacotherapy*. 2024;175:116645. doi:10.1016/j.biopha.2024.116645

CITE AS: Kato Jumba K. (2026). Neurotoxicity and Diabetes: Mechanistic Insights into Oxidative Stress Mediated Neuronal Damage and Potential Neuroprotective Interventions.
IDOSR JOURNAL OF SCIENCE AND TECHNOLOGY 12(1):61-66. <https://doi.org/10.59298/IDOSR/JST/26/113.6166>