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ABSTRACT 
Diabetes mellitus is associated with accelerated neuronal injury manifesting as diabetic peripheral neuropathy, 
cognitive impairment, and heightened risk of neurodegenerative disease. A large body of evidence implicates 
oxidative stress-the imbalance between production of reactive oxygen and nitrogen species (ROS/RNS) and 
antioxidant defenses a central mediator linking hyperglycaemia, dyslipidaemia, and chronic inflammation to 
neuronal dysfunction. Hyperglycaemia-driven metabolic pathways (polyol flux, advanced glycation end-products, 
protein kinase C activation, hexosamine pathway), mitochondrial overload, NADPH oxidase activation, and 
inflammation converge on excessive ROS/RNS generation, which in turn damages neuronal macromolecules, 
perturbs ion homeostasis, impairs axonal transport and mitochondrial dynamics, and triggers neuroinflammation. 
Translational research has explored a range of neuroprotective strategies tight metabolic control, repurposed 
antidiabetic drugs with pleiotropic antioxidant effects, nutraceutical and polyphenol interventions, Nrf2 pathway 
activators, mitochondria-targeted antioxidants, and novel drug-delivery systems-to interrupt the oxidative cascade. 
While preclinical studies show consistent neuroprotection by redox-targeted interventions, clinical translation has 
been mixed due to heterogeneity in patient populations, timing of intervention, bioavailability of compounds, and 
limited biomarker-guided stratification. Future progress requires biomarker-driven trials, mitochondrial- and 
blood–brain-barrier–targeted delivery, and combination therapies that preserve physiological ROS signalling while 
preventing pathological oxidative damage. This review synthesizes current mechanistic insights into oxidative 
stress–mediated neurotoxicity in diabetes and evaluates the evidence and potential of neuroprotective interventions. 
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INTRODUCTION 

Diabetes mellitus is a global metabolic disorder that profoundly affects both the peripheral and central nervous 
systems' function. Patients with diabetes experience a high incidence of diabetic peripheral neuropathy (DPN), which 
manifests as chronic pain, numbness, paresthesia, and an increased risk of foot ulceration and gait instability [1]. 
Beyond peripheral nerves, diabetes is increasingly associated with central nervous system complications, including 
cognitive impairment, accelerated brain aging, and elevated risk for dementia and Alzheimer’s disease [2]. These 
neurological sequelae not only compromise quality of life but also significantly increase morbidity and healthcare 
burden. A central pathological mechanism linking diabetes to neuronal injury is oxidative stress, defined as an 
imbalance between reactive oxygen and nitrogen species (ROS/RNS) production and endogenous antioxidant 
defenses [3]. Chronic hyperglycaemia, insulin resistance, dyslipidaemia, and systemic low-grade inflammation 
converge to promote persistent ROS/RNS generation [4]. At the same time, key antioxidant systems-including 
superoxide dismutases, catalase, glutathione peroxidase, and glutathione pools-are impaired or depleted in diabetic 
tissues, creating a pro-oxidant environment [5]. This redox imbalance damages neuronal lipids, proteins, and 
nucleic acids, alters membrane integrity, disrupts intracellular signaling, and induces mitochondrial dysfunction. 
These effects collectively compromise neuronal survival, axonal transport, and synaptic function. The deleterious 
impact of oxidative stress on neurons extends to multiple cellular compartments. Mitochondria, which are highly 
metabolically active in neurons, are particularly vulnerable. Oxidative damage to mitochondrial DNA and 
respiratory chain complexes impairs ATP production, generating further ROS and establishing a self-propagating 
cycle of injury [6]. In addition, chronic oxidative stress activates inflammatory signaling pathways and glial cells, 
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which release cytokines and secondary ROS/RNS, amplifying neural damage [7]. Endothelial cells and pericytes in 
the neurovascular unit are also affected, impairing blood–nerve and blood–brain barrier integrity and facilitating 
infiltration of inflammatory mediators [7]. Understanding these oxidative mechanisms is critical for developing 
neuroprotective interventions in diabetes. Therapeutic strategies that restore redox homeostasis have the potential 
to prevent or mitigate peripheral and central neuronal injury, preserve cognitive function, and improve quality of 
life. Current research emphasizes the importance of targeting mitochondrial dysfunction, enhancing endogenous 
antioxidant pathways, and modulating inflammatory responses. Lifestyle interventions such as optimized glycaemic 
control, exercise, and dietary modulation are fundamental but often insufficient, necessitating adjunct 
pharmacological and nutraceutical approaches. Emerging evidence from preclinical and early clinical studies 
supports the efficacy of such interventions, although translation to broad clinical practice remains challenging due 
to patient heterogeneity and variability in oxidative stress burden. 
2. Sources of ROS/RNS in Diabetes and How They Target Neurons 
Multiple interconnected biochemical pathways drive ROS/RNS generation in diabetic states. 
Mitochondrial overload occurs when excess glucose and fatty acid oxidation increases electron donors (NADH and 

FADH₂), resulting in electron leakage at complexes I and III of the electron transport chain and elevated superoxide 
production [8]. This ROS accumulation damages mitochondrial DNA and respiratory proteins, establishing a 
feedback loop that amplifies oxidative injury. NADPH oxidases (NOX) are activated by hyperglycaemia and pro-
inflammatory cytokines in neurons, glial cells, and vascular endothelium, producing bursts of superoxide that 
exacerbate neuronal oxidative stress [9]. The polyol pathway contributes to redox imbalance by consuming 
NADPH to convert glucose into sorbitol, reducing availability of this cofactor for glutathione regeneration and 
weakening antioxidant defenses [10]. Advanced glycation end-products (AGEs) interact with the receptor for 

AGEs (RAGE) on neurons, microglia, and endothelial cells, activating NF-κB and NOX-mediated pro-oxidant and 
pro-inflammatory cascades [11]. Nitrosative stress arises from inducible nitric oxide synthase (iNOS) overactivity 
in inflamed neural tissue, generating nitric oxide that reacts with superoxide to form peroxynitrite, a highly reactive 
species that damages proteins, lipids, and DNA [12]. 
These ROS and RNS converge to injure neuronal axons and soma through multiple mechanisms: oxidation of lipids 
and proteins, disruption of ion channel function, impairment of axonal transport, and mitochondrial dysfunction 
[13]. Long peripheral nerves are particularly susceptible due to their high metabolic demands. Furthermore, 
oxidative injury to endothelial cells and pericytes compromises the neurovascular unit, weakening the blood–nerve 
and blood–brain barriers, reducing perfusion, and facilitating infiltration of inflammatory cells, which further 
exacerbate neuronal damage [14]. This complex interplay of metabolic, oxidative, and inflammatory pathways 
underlies the widespread neurotoxicity observed in diabetes, providing a mechanistic rationale for interventions 
targeting oxidative stress and its downstream effects. 
3. Cellular and Molecular Consequences of Oxidative Neuronal Injury 
Oxidative stress exerts profound effects on neurons and glial cells through multiple, interrelated mechanisms that 
compromise structural integrity, cellular signaling, and functional performance. Mitochondrial dysfunction is a 
primary target: reactive oxygen species damage mitochondrial DNA and proteins, impairing electron transport 
chain function and uncoupling oxidative phosphorylation. The resulting reduction in ATP production is particularly 
detrimental to neurons, which rely on sustained high-energy flux for ion pumping, synaptic transmission, and axonal 
transport [15]. Mitochondrial impairment also increases further ROS generation, establishing a self-perpetuating 
cycle of injury [16]. 
Impaired axonal transport and cytoskeletal damage are critical downstream effects. Oxidative modification of motor 
proteins such as kinesin and dynein, along with cytoskeletal components including tubulin and neurofilaments, slows 
the trafficking of mitochondria, vesicles, and signaling molecules along axons [17]. Distal axonal degeneration 
emerges as a hallmark of length-dependent neuropathy, explaining why long peripheral nerves are often the earliest 
and most severely affected in diabetes [18]. 
Excitotoxicity and calcium dysregulation further exacerbate neuronal injury [19]. Oxidative stress impairs 
glutamate uptake and modulates receptor activity, resulting in excessive excitatory signaling [20]. Intracellular 
calcium overload activates proteases, phospholipases, and endonucleases, compounding structural damage to 
membranes, cytoskeleton, and organelles [21]. This dysregulation also affects synaptic plasticity and 
neurotransmitter release, linking cellular damage to functional deficits. 
DNA damage and poly (ADP-ribose) polymerase (PARP) overactivation represent additional molecular 
consequences [22]. Oxidative lesions in nuclear and mitochondrial DNA activate PARP, which consumes NAD+ 
and ATP in attempts to repair damage [23]. Persistent overactivation leads to energetic collapse and triggers 
programmed cell death pathways, including apoptosis and parthanatos, particularly in metabolically stressed 
neurons [24]. 
Neuroinflammation is tightly intertwined with oxidative stress. Microglia, the resident immune cells of the central 
nervous system, become primed toward pro-inflammatory phenotypes under oxidative conditions. Activated 
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microglia release cytokines, ROS, and reactive nitrogen species, establishing a feed-forward loop that amplifies 
neuronal injury and propagates inflammatory signaling across neural networks [25]. Astrocytes and 
oligodendrocytes also exhibit functional impairment, contributing to reduced support for axons, myelin instability, 
and further metabolic vulnerability [26]. 
Synaptic dysfunction and cognitive deficits emerge as higher-order consequences of these cellular and molecular 
insults. Oxidative modification of synaptic proteins, neurotransmitter receptors, and signaling pathways disrupts 
long-term potentiation and synaptic plasticity, which underlies learning and memory [27]. Clinically, these 
processes manifest as cognitive impairment, slowed information processing, and increased susceptibility to 
neurodegenerative disorders in individuals with diabetes. 
Collectively, these mechanisms operate across multiple scales-from redox-sensitive signaling pathways at the 
molecular level to conduction deficits in peripheral nerves and cognitive decline in the central nervous system. The 
convergence of mitochondrial dysfunction, cytoskeletal impairment, excitotoxicity, DNA damage, and 
neuroinflammation explains the heterogeneity and severity of diabetic neuroclinical phenotypes. Understanding 
these interconnected pathways is crucial for the development of targeted neuroprotective strategies aimed at 
mitigating oxidative neuronal injury and preserving both peripheral and central nervous system function. 
4. Biomarkers and Experimental Models 
Accurate assessment of oxidative neuronal injury requires both direct and indirect biomarkers. Lipid peroxidation 
products such as F2-isoprostanes and 4-hydroxynonenal reflect oxidative damage to cellular membranes [28]. 
Protein carbonyls and nitrotyrosine indicate oxidation and nitration of structural and enzymatic proteins, while 

DNA oxidation markers, including 8-hydroxy-2′-deoxyguanosine (8-OHdG), track genomic and mitochondrial 
damage [29]. Redox status can be quantified via ratios of reduced to oxidized glutathione (GSH:GSSG) and 
activities of key antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase [30]. 
Functional and structural correlates are provided by neurophysiologic tests, including nerve conduction studies, 
electromyography, and assessments of sensory thresholds. Histopathological evaluation of skin and sural nerve 
biopsies allows direct visualization of axonal degeneration and myelin pathology [31]. Advanced neuroimaging 
techniques, including magnetic resonance spectroscopy and diffusion tensor imaging, provide in vivo assessment of 
neural integrity and oxidative metabolic changes. 
Experimental models have been indispensable in elucidating mechanisms of oxidative neurotoxicity and evaluating 
potential interventions. Streptozotocin-induced diabetic rodents replicate hyperglycaemia-driven neuropathic 
features, while high-fat diet and insulin resistance models mimic metabolic dysfunction in type 2 diabetes [32]. 
Transgenic animals allow targeted manipulation of oxidative stress pathways, including NADPH oxidases, 
mitochondrial enzymes, and antioxidant systems [33]. Despite their utility, translational gaps remain due to species 
differences, differences in disease progression, and timing of intervention, highlighting the need for careful 
extrapolation to human clinical contexts. 
5. Neuroprotective Strategies: Mechanisms and Evidence 
Given oxidative stress’s centrality, redox-focused neuroprotection spans several complementary approaches. 
Metabolic control and lifestyle: Tight glycaemic control, weight reduction and exercise reduce substrate-driven 
ROS production, improve mitochondrial dynamics and lower inflammation [34]. Clinical data show that good 
metabolic control lowers incidence and progression of DPN and may slow cognitive decline [35]. Repurposed 
antidiabetic drugs with neuroprotective effects: Metformin, GLP-1 receptor agonists and SGLT2 inhibitors exhibit 
pleiotropic benefits-mitigating mitochondrial dysfunction, lowering inflammation and reducing oxidative stress-
shown in preclinical and emerging clinical studies to improve neural outcomes [36].  Antioxidant nutraceuticals 
and polyphenols: Compounds such as resveratrol, curcumin, epigallocatechin gallate and flavonoids reduce ROS, 
activate Nrf2-mediated antioxidant responses, and attenuate microglial activation [37]. Preclinical models show 
preservation of nerve structure and function; clinical trials demonstrate improved oxidative biomarkers and 
symptomatic relief in some cohorts, though heterogeneity and bioavailability limitations temper conclusions. [5] 
Nrf2 activators and endogenous pathway enhancers: Pharmacologic activation of Nrf2 boosts transcription of 
glutathione synthesis and phase II detox enzymes, offering broad cytoprotection [38]. Early-stage compounds and 
natural activators (sulforaphane, bardoxolone-like agents) show promise but require careful safety evaluation. 
Mitochondria-targeted antioxidants and delivery systems: Molecules designed to accumulate in mitochondria (e.g., 
mitoQ, SS peptides) have succeeded in reducing mitochondrial ROS and improving nerve function in animal models 
[39]. Nanoparticle-based delivery and blood–brain-barrier–permeable formulations are active areas to improve CNS 
targeting and bioavailability [6,40] 

Anti-inflammatory strategies: Targeting microglial activation, cytokine signaling (IL-1β, TNF-α) and PARP 
pathways can blunt the oxidative–inflammatory feedback loop. Combination therapies that simultaneously reduce 
oxidative burden and inflammation show additive benefits in preclinical studies [41]. Symptom-directed and 
regenerative approaches: Neurotrophic factors, Schwann cell support, and therapies that enhance axonal 
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regeneration (e.g., growth factor delivery, cell therapies) are being tested alongside antioxidant strategies to restore 
function rather than solely halting degeneration [42]. 

CONCLUSION 
Oxidative stress is a central mechanistic nexus linking metabolic derangements in diabetes to neuronal injury. The 
oxidative cascade damages mitochondria, perturbs ion homeostasis and axonal transport, and fuels 
neuroinflammation-collectively leading to peripheral neuropathy and cognitive dysfunction. Neuroprotective 
strategies that target redox imbalance-when coupled with improved metabolic control, targeted delivery, and 
biomarker-driven patient selection-offer realistic promise for mitigating diabetic neurotoxicity. Realizing that 
promise will require rigorous translational pipelines, precision clinical trials, and therapies that preserve 
physiological ROS-dependent signalling while preventing pathological oxidative damage. 
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