

International Digital Organization for Scientific Research

IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY 11(1):33-36, 2026.

<https://doi.org/10.59298/IDOSR/JBCP/26/102.3336>

Assessing How Climate Variability (Floods, Droughts) Affects Water Contamination and Typhoid Outbreaks

Alberta Jeanne N.

School of Applied Health Sciences Kampala International University Uganda

ABSTRACT

Climate variability, including extreme weather events such as floods and droughts, has significant implications for water contamination and the occurrence of waterborne diseases like typhoid fever. This review explores the mechanisms by which floods and droughts contribute to the contamination of water sources and the subsequent increase in typhoid outbreaks. In flood-prone regions, overflowing sewage systems and compromised water treatment facilities lead to the spread of pathogens, including *Salmonella enterica* serovar Typhi, the causative agent of typhoid fever. Conversely, droughts exacerbate water scarcity, leading communities to rely on contaminated water sources, further elevating the risk of outbreaks. The review highlights the critical need for improved water and sanitation infrastructure, climate-resilient water management practices, and effective early warning systems to mitigate the public health impacts of these extreme events. By addressing these vulnerabilities, vulnerable populations can be better protected from the health threats posed by climate variability.

Keywords: Climate variability, floods, droughts, water contamination, typhoid fever, *Salmonella enterica*.

INTRODUCTION

Climate variability, encompassing extreme weather events such as floods and droughts, has become an increasingly critical factor influencing both environmental conditions and public health outcomes worldwide. These climate events are not merely transient fluctuations in weather patterns, but rather have profound and often long-lasting effects on ecosystems, economies, and communities, especially in vulnerable regions. One of the most significant public health concerns linked to climate variability is its impact on water quality [1]. Waterborne diseases, including typhoid fever, which is primarily caused by *Salmonella enterica* serovar *Typhi*, pose a major health risk in areas with inadequate access to safe water and sanitation infrastructure. The link between climate variability and the prevalence of such diseases highlights a complex intersection of environmental change, public health, and social vulnerability [2].

In particular, the occurrence of extreme weather events, including floods and droughts, can directly affect water sources and sanitation systems, increasing the likelihood of water contamination. Flooding often leads to the overflow of water from polluted sources into drinking water supplies, while droughts can reduce access to clean water by drying up natural water sources and exacerbating water scarcity. In both scenarios, the exposure to contaminated water, either through direct consumption or poor hygiene practices, can lead to the outbreak of infectious diseases such as typhoid fever [3]. Understanding the relationship between climate variability and the dynamics of water contamination is crucial for developing strategies to mitigate the health risks associated with such outbreaks. This study, therefore, seeks to explore how climate variability, particularly floods and droughts, impacts water contamination and the subsequent rise in typhoid outbreaks.

Climate change, as evidenced by rising global temperatures and shifting weather patterns, has had a disproportionate impact on developing countries, particularly in regions with already limited resources to adapt to these changes. In Sub-Saharan Africa, South Asia, and parts of Latin America, where access to safe drinking water and sanitation is often inadequate, the effects of climate variability are more pronounced [4]. According to the World Health Organization (WHO) [5], waterborne diseases such as typhoid fever are responsible for a significant burden of disease, with more than 20 million cases and 200,000 deaths reported annually. The link between climate extremes,

such as floods and droughts, and the increased incidence of waterborne diseases has been documented in numerous studies.

Typhoid fever, caused by *Salmonella enterica* serovar *Typhi*, is primarily transmitted through the ingestion of contaminated water or food. In regions where water treatment and sanitation systems are compromised, the introduction of pathogens into drinking water supplies during climate events such as floods becomes a major public health concern. Similarly, droughts, which cause water scarcity, can lead to the use of unclean water sources or untreated water, increasing the risk of contamination [6]. The fluctuating nature of rainfall patterns, with prolonged periods of drought followed by intense rainfall, creates an environment where water sources are often vulnerable to contamination, leading to increased risks of typhoid outbreaks. This underscores the need to investigate the mechanisms linking climate variability to water quality and public health outcomes, particularly in the context of low-income countries with limited infrastructure to deal with such challenges.

While climate variability, including extreme weather events like floods and droughts, has been recognized as a key driver of waterborne diseases, the specific ways in which these events lead to water contamination and subsequent typhoid outbreaks remain underexplored. In many low-income countries, water management systems are already overstretched, and extreme weather events only exacerbate the situation [7]. For instance, floods may overwhelm water treatment plants, allowing contaminated water to spread, while droughts may increase reliance on unsafe water sources due to scarcity. Despite these known risks, there is limited research on how these climate extremes influence the quality of water and contribute to the outbreak of typhoid fever, particularly in regions where the health infrastructure is underdeveloped [8].

Furthermore, while there is an understanding of the general link between climate change and public health, the direct impact of specific climate events like floods and droughts on typhoid fever incidence has not been systematically studied in a comprehensive manner. The problem is further compounded by the scarcity of data, especially in rural or remote areas, which makes it difficult to assess the full scale of the issue and the effectiveness of existing intervention measures [9]. This study seeks to address this gap by examining the relationship between climate variability, water contamination, and typhoid outbreaks, with a focus on the mechanisms that underlie these events and their public health implications. The primary objective of this study is to examine the relationship between climate variability specifically floods and droughts and the contamination of water sources, which in turn impacts the frequency of typhoid outbreaks in vulnerable regions. The research aims to investigate how these extreme weather events exacerbate water contamination in areas lacking proper sanitation infrastructure. Furthermore, the study will assess the correlation between these climate extremes and the rise in typhoid fever incidents, a waterborne disease that thrives in unsanitary conditions. It will also explore the social, environmental, and infrastructural factors that elevate the risks of water contamination and disease transmission during such events. Additionally, the study seeks to evaluate the current effectiveness of public health interventions and water management strategies in mitigating the impact of floods and droughts on public health. Through these objectives, the research will offer practical recommendations for policy improvement, such as enhancing water quality management and strengthening public health measures to reduce the burden of typhoid fever in areas affected by climate variability. The significance of this study lies in its potential to inform both local and global health policy, contributing to more effective climate adaptation strategies that can address the dual challenges of climate change and waterborne diseases, particularly in low-income, climate-vulnerable regions.

Impact of Floods on Water Contamination and Typhoid Outbreaks

Floods are one of the most disruptive natural events that significantly affect water quality. When floods occur, they can overwhelm water treatment facilities, sewage systems, and natural water reservoirs, causing the mixing of clean and contaminated water sources. In regions with poor sanitation infrastructure, the contamination of drinking water sources with fecal matter becomes a major concern. Pathogens such as *Salmonella Typhi*, the causative agent of typhoid fever, are commonly found in sewage and can easily spread to drinking water during flooding events [10]. The risk of typhoid fever outbreaks increases significantly following floods due to the widespread contamination of water sources. For instance, studies have shown that communities living in flood-prone areas often experience a higher incidence of typhoid fever outbreaks after major flooding events. Floodwaters can also displace communities, leading to overcrowded conditions in temporary shelters, where hygiene practices are often compromised, further facilitating the spread of waterborne diseases. Several case studies have demonstrated the link between floods and typhoid fever outbreaks. For example, the 2004 floods in Southeast Asia were followed by an increase in typhoid cases, particularly in areas where infrastructure was damaged, and water sources were contaminated [11]. Similarly, recent flooding in parts of sub-Saharan Africa has led to significant spikes in the incidence of waterborne diseases, including typhoid, due to the contamination of wells and rivers.

Droughts and Their Role in Water Contamination and Typhoid Outbreaks

In contrast to floods, droughts also have a profound impact on water quality and public health. Droughts lead to a reduction in the availability of freshwater, forcing communities to rely on alternative, often less reliable, water sources such as shallow wells, rivers, and ponds. These water sources are more prone to contamination, especially

in areas with limited access to sanitation [12]. The reduction in water availability also puts stress on water treatment systems, leading to poor water quality and an increased likelihood of waterborne diseases like typhoid. Drought conditions can also lead to the concentration of pollutants in water sources. As water levels drop in reservoirs and rivers, the concentration of harmful pathogens, including *Salmonella Typhi*, can increase, exacerbating the risk of outbreaks. In many regions, water scarcity due to drought also results in decreased hygiene and sanitation practices, further contributing to the spread of waterborne diseases. A notable example is the prolonged drought in Somalia during the 2010–2011 period, which resulted in water shortages and the contamination of remaining water sources, leading to a spike in typhoid fever cases [13]. Similar patterns have been observed in parts of India and sub-Saharan Africa, where droughts have led to a scarcity of clean water, increasing the risk of typhoid outbreaks.

Mechanisms Linking Climate Variability to Typhoid Outbreaks

Climate variability plays a significant role in the occurrence of typhoid outbreaks, influencing multiple environmental and social factors. One of the key mechanisms linking climate variability to typhoid transmission is water quality deterioration. Extreme weather events, such as floods and droughts, can severely compromise water quality, either through direct contamination from sewage during floods or the concentration of pollutants in water sources during droughts [14]. In both cases, the water becomes a breeding ground for pathogens like *Salmonella Typhi*, the bacterium responsible for typhoid. Additionally, floods often disrupt essential sanitation infrastructure, such as sewage treatment plants, exacerbating the contamination of water sources. Conversely, droughts can reduce the availability of clean water for sanitation purposes, leading to the improper disposal of waste and further spreading of waterborne diseases. Another significant factor is the increased human mobility triggered by these extreme events [15]. As people are displaced from their homes due to floods or droughts, they often migrate in search of food and water, leading to overcrowded conditions in temporary shelters or refugee camps. These overcrowded living environments create ideal conditions for the rapid transmission of infectious diseases, including typhoid, as sanitation and hygiene practices become more difficult to maintain. Furthermore, climate-induced shifts in disease ecology contribute to the spread of typhoid. Warmer temperatures and altered precipitation patterns can create favorable conditions for the survival and proliferation of *Salmonella Typhi* in the environment. Higher temperatures may enable the bacterium to survive longer in contaminated water, while changing rainfall patterns can increase the likelihood of water contamination, further heightening the risk of outbreaks. Together, these mechanisms underscore the complex relationship between climate variability and the spread of typhoid fever [16].

Public Health Implications and Recommendations

The relationship between climate variability, water contamination, and typhoid outbreaks highlights the critical need for a multifaceted public health and environmental management approach. Addressing these challenges requires a comprehensive strategy that integrates improvements in infrastructure, proactive management, and community engagement. A primary recommendation is the strengthening of water and sanitation infrastructure, with a focus on building resilience to climate-related disruptions [17]. This includes upgrading water treatment facilities, improving sewage systems, and ensuring that vulnerable communities have access to safe water, especially during extreme weather events like floods and droughts. Additionally, climate-resilient water management practices are essential to mitigate the impacts of climate variability. Flood control measures, drought-resistant water sources, and the adaptation of water distribution systems to changing climatic conditions are key strategies to ensure consistent access to clean water. Developing early warning systems is another vital recommendation, as they can help predict and mitigate the impact of climate-related events on water quality. Early warnings allow for timely interventions to prevent waterborne diseases like typhoid, particularly in at-risk areas. Community education is also crucial, as public awareness campaigns focused on hygiene, water treatment, and sanitation practices can empower individuals to reduce their risk of infection during climate extremes [18]. Finally, establishing robust surveillance and monitoring systems is essential to track both water quality and the prevalence of typhoid. This proactive approach enables health authorities to respond swiftly and effectively to emerging public health threats. These combined efforts can significantly reduce the burden of climate-sensitive diseases like typhoid.

CONCLUSION

The connection between climate variability and the incidence of typhoid fever highlights the significant, often overlooked, impact of climate change on public health. Extreme weather events, such as floods and droughts, can disrupt water and sanitation systems, leading to the contamination of drinking water sources. This contamination provides a conducive environment for the spread of waterborne diseases like typhoid fever, which disproportionately affects vulnerable populations. Addressing this issue requires urgent attention to strengthening water and sanitation infrastructure, particularly in regions most affected by climate variability. Climate-resilient water management strategies should be implemented to ensure safe access to clean water, even during periods of extreme weather. Additionally, the establishment of robust early warning and surveillance systems can aid in detecting potential outbreaks before they escalate, enabling timely interventions. By adopting these preventive measures, communities can build resilience to climate-induced health threats and reduce the risk of typhoid outbreaks, ultimately safeguarding public health in the face of climate change.

REFERENCES

1. Schaeffer, R., Schipper, E.L.F., Ospina, D., Mirazo, P., Alencar, A., Anvari, M., et al: Ten new insights in climate science 2024. *One Earth*. 8, 101285 (2025). <https://doi.org/10.1016/j.oneear.2025.101285>
2. Omuna, D., Obaroh, I. O., Alum, E. U., Akiyode, O. O., Eniru, E. I., Tiyo, C. E & Omoding, J. (2024). Impacts of climate change on water security in Uganda: A review. *Int. J. Adv. Multidiscip. Res.* 11(9): 47-60. DOI: <http://dx.doi.org/10.22192/ijamr.2024.11.09.005>
3. Alum, E.U., Obeagu, E.I., Ugwu, O.P. Enhancing quality water, good sanitation, and proper hygiene is the panacea to diarrhea control and the attainment of some related sustainable development goals: A review. *Medicine (Baltimore)*. 2024 Sep 20;103(38):e39578. doi: 10.1097/MED.00000000000039578.
4. Adom, P.K.: The socioeconomic impact of climate change in developing countries over the next decades: A literature survey. *Heliyon*. 10, e35134 (2024). <https://doi.org/10.1016/j.heliyon.2024.e35134>
5. Water, sanitation and hygiene burden of disease, <https://www.who.int/data/gho/data/themes/topics/water-sanitation-and-hygiene-burden-of-disease>
6. Kabwama, S.N., Bulage, L., Nsubuga, F., Pande, G., Oguttu, D.W., Mafigiri, R., et al.: A large and persistent outbreak of typhoid fever caused by consuming contaminated water and street-vended beverages: Kampala, Uganda, January – June 2015. *BMC Public Health*. 17, 23 (2017). <https://doi.org/10.1186/s12889-016-4002-0>
7. Agah, V. M., Orji, O. U., Ezeani, N. N., Ugwu, O. P., et al. (2023). Physico-chemical and Bacteriological Analysis of Water used for Drinking and other Domestic Purposes in Amaozara Ozizza, Afikpo North, Ebonyi State, Nigeria. *Nigerian Journal of Biochemistry and Molecular Biology*, 38(1), 1-8. <https://doi.org/10.2659/njbjmb.2023.151>.
8. Bolan, S., Padhye, L.P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., et al: Impacts of climate change on the fate of contaminants through extreme weather events. *Science of The Total Environment*. 909, 168388 (2024). <https://doi.org/10.1016/j.scitotenv.2023.168388>
9. Wu, X., Lu, Y., Zhou, S., Chen, L., Xu, B.: Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. *Environment International*. 86, 14–23 (2016). <https://doi.org/10.1016/j.envint.2015.09.007>
10. Nakisuyi J, Bernis M, Ndamira A, Kayini V, Mulumba R, Theophilus P, Agwu E, Lule H., (2023). Prevalence and factors associated with malaria, typhoid, and co-infection among febrile children aged six months to twelve years at kampala international university teaching ... *Heliyon*, 9, (9), e19588.
11. Shokri, A., Sabzevari, S., Hashemi, S.A.: Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. *Parasite Epidemiology and Control*. 9, e00144 (2020). <https://doi.org/10.1016/j.parepi.2020.e00144>
12. Agwu E, Ihongbe J C, Okogun G R A, Inyang N J(2009). High incidence of co-infection with Malaria and Typhoid in febrile HIV infected and AIDS patients in Ekpoma, Edo State, Nigeria. *Brazilian Journal of Microbiology*, 40, 329-332. <https://doi.org/10.1590/S1517-83822009000200022>.
13. Billah, M.M., Rahman, M.S.: *Salmonella* in the environment: A review on ecology, antimicrobial resistance, seafood contaminations, and human health implications. *Journal of Hazardous Materials Advances*. 13, 100407 (2024). <https://doi.org/10.1016/j.hazadv.2024.100407>
14. Aslam, B., Aljasir, S.F.: Climate Change and AMR: Interconnected Threats and One Health Solutions. *Antibiotics*. 14, 946 (2025). <https://doi.org/10.3390/antibiotics14090946>
15. Biswas, S., Adhikary, M., Alam, A., Islam, N., Roy, R.: Disparities in access to water, sanitation, and hygiene (WASH) services and the status of SDG-6 implementation across districts and states in India. *Heliyon*. 10, e37646 (2024). <https://doi.org/10.1016/j.heliyon.2024.e37646>
16. Obeagu, E. I., Ugwu, O. P. C., Alum, E. U. Curbing Diarrhea in Children below five years old: The sub-Saharan African Standpoint. *J. New Medical Innovations and Research*. 2024; 5(1); DOI:10.31579/2767-7370/083
17. Ejiohuo, O., Onyeaka, H., Akinsemolu, A., Nwabor, O.F., Siyanbola, K.F., Tamasiga, P., Al-Sharify, Z.T.: Ensuring water purity: Mitigating environmental risks and safeguarding human health. *Water Biology and Security*. 4, 100341 (2025). <https://doi.org/10.1016/j.watbs.2024.100341>
18. Islam, M.M., Hasan, M., Mia, M.S., Al Masud, A., Islam, A.R.M.T.: Early warning systems in climate risk management: Roles and implementations in eradicating barriers and overcoming challenges. *Natural Hazards Research*. 5, 523–538 (2025). <https://doi.org/10.1016/j.nhres.2025.01.007>

CITE AS: Alberta Jeanne N. (2026). Assessing How Climate Variability (Floods, Droughts) Affects Water Contamination and Typhoid Outbreaks. IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY 11(1):33-36. <https://doi.org/10.59298/IDOSR/JBCP/26/102.3336>