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ABSTRACT 
Artificial intelligence (AI) and big data are reshaping how we understand, predict, and manage 
obesity-associated type 2 diabetes (T2D). The diabesity phenotype arises from heterogeneous interactions 
among genes, behaviors, environments, and health-care systems. At scale, routinely collected data electronic 
health records (EHRs), pharmacy claims, continuous glucose monitoring (CGM), wearables, meal logs, imaging, 
multi-omics, and social determinants of health (SDOH) capture this complexity but are noisy, incomplete, and 
biased. Modern machine-learning (ML) methods can transform these substrates into actionable insights: 
predicting incident T2D and complications; detecting subclinical trajectories; stratifying patients into 
mechanistic endotypes; recommending individualized nutrition, activity, and pharmacotherapy; and monitoring 
for relapse or adverse events. Time-series deep learning, survival modeling, graph neural networks, and causal 
inference frameworks enable robust forecasting and counterfactual reasoning, while reinforcement learning (RL) 
personalizes dynamic regimens. However, translation hinges on trustworthy data engineering, external 
validation, calibration, explainability, privacy, and equity. Federated learning and differential privacy protect 
data; fairness auditing and participatory design mitigate bias; and MLOps governs monitoring, drift detection, 
and post-deployment updates. Integrating AI into clinical workflows requires human-in-the-loop decision 
support, interoperable standards, and pragmatic evaluation focused on outcomes that matter to patients and 
systems. This review synthesizes the data foundations, predictive analytics, digital phenotyping, and 
decision-support paradigms relevant to diabesity; outlines implementation, safety, and governance 
requirements; and maps a path toward multimodal, foundation-model–enabled “digital twins” that couple 
physiology with behavior to modify disease trajectories. Done well, AI augments not replaces clinicians and 
patients, enabling earlier intervention, precise therapy matching, and durable cardiometabolic risk reduction. 
Keywords: machine learning; continuous glucose monitoring; digital phenotypes; federated learning; precision 
diabetes care 

 
INTRODUCTION 

Type 2 diabetes (T2D) linked to obesity often termed “diabesity” is common, costly, and heterogeneous. Despite 
effective lifestyle, pharmacologic, and surgical tools, many patients experience therapeutic inertia, fragmented 
care, and preventable complications. Three realities motivate AI-enabled transformation[1–4]. First, the 

biology is complex: insulin resistance (IR) and β-cell dysfunction emerge from interactions among adipose, 
hepatic, muscular, islet, vascular, immune, and neural networks shaped by diet, sleep/circadian patterns, physical 
activity, medications, psychosocial stress, and the built environment[5, 6]. Second, the data now exist to observe 
this complexity: EHRs record diagnoses, labs, vitals, procedures, medication exposures, and unstructured notes; 
CGM provides minute-level glucose dynamics; wearables capture steps, heart rate variability, sleep staging, and 
energy expenditure; nutrition apps reveal timing and composition; imaging quantifies visceral fat and hepatic 
steatosis; genomics/epigenomics/metabolomics detail molecular states; and SDOH datasets index 
neighborhood deprivation, food access, pollution, and transportation[7]. Third, traditional guidelines and 
single-risk-factor thresholds cannot fully exploit these data to tailor care in real time. 
AI brings pattern recognition, forecasting, and decision optimization to this landscape. Supervised learning can 
predict incident T2D, hospitalization, hypoglycemia, or progression to insulin; survival models estimate 
time-to-event under competing risks; sequence models (temporal convolutional networks, transformers) learn 
from CGM and medication histories; and graph neural networks capture relationships among patients, 
clinicians, and codes[8]. Unsupervised and self-supervised learning extract latent structure for digital 
phenotyping endotypes that explain why one patient responds to a GLP-1 receptor agonist while another 
benefits more from an SGLT2 inhibitor or thiazolidinedione[8]. Causal inference methods targeted maximum 
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likelihood estimation, doubly robust learners, instrumental variables, and causal forests help move beyond 
correlation toward estimating individualized treatment effects. RL and contextual bandits personalize sequential 
decisions: meal timing, macronutrient distribution, activity prompts, and medication titration. 
Yet predictive accuracy is insufficient. For clinical utility, models must be calibrated, externally validated, and 
explainable enough for safe action. They must handle missingness, label noise, and dataset shift; respect privacy 
and consent; and avoid amplifying structural bias. Federated learning allows cross-institutional training without 
centralizing raw data, while differential privacy and secure aggregation mitigate re-identification risk. 
Deployment requires interoperable standards (e.g., FHIR), clinician-friendly interfaces, and evaluation in 
pragmatic trials or stepped-wedge implementations that measure HbA1c, weight, cardiovascular/renal 
outcomes, utilization, and patient-reported outcomes[9, 10]. Post-deployment, MLOps monitors drift, fairness 
metrics, and safety signals, updating models with governance and auditability. This review proceeds in six parts. 
Section 1 outlines data foundations: multimodal sources, preprocessing, interoperability, and governance. 
Section 2 covers predictive analytics for risk, progression, and complications using time-series and graph 
methods. Section 3 details digital phenotyping and patient stratification to guide therapy. Section 4 focuses on 
decision support and personalization rules, recommendations, RL, and digital twins. Section 5 addresses 
implementation, safety, equity, privacy, and regulation, including federated learning and differential privacy. 
Section 6 looks ahead to multimodal foundation models, synthetic data, and clinician/copilot workflows. We 
close with a practical conclusion on building trustworthy, equitable AI that augments human expertise to 
prevent and manage diabesity. 
2. Data Foundations for AI in Diabesity: Sources, Engineering, and Governance 
Modern diabesity AI depends on multimodal data assembled over time: 
EHR/claims: diagnoses (ICD), procedures (CPT), labs (HbA1c, lipids, ALT, eGFR), vitals, medication 
orders/fill patterns, and clinical notes. Free-text notes and scanned documents carry context (diet, adherence, 
housing) accessible via natural language processing (NLP)[11]. 
CGM/time series: minute-level glucose enabling features (time-in-range, glycemic variability, rate-of-change, 
dawn phenomenon indices) and raw sequences for deep models[12]. 
Wearables/phones: steps, heart rate, HRV, sleep duration/regularity/staging, circadian alignment, 
location-derived activity spaces, and app-based nutritional timing[12]. 
Imaging: DEXA, CT/MRI for visceral/subcutaneous fat and liver fat (MRI-PDFF), and ultrasound 
elastography for fibrosis[13]. 
Multi-omics: genomics (polygenic risk scores), epigenomics (methylation), 
transcriptomics/proteomics/metabolomics/lipidomics to capture pathways (inflammation, mitochondrial, 
adipokine signaling)[14]. 
SDOH/environment: neighborhood deprivation indices, food deserts, walkability, air quality, temperature, and 
transportation. 
Engineering challenges. Data are messy: missing not at random, irregular sampling, coding drift, and site 
heterogeneity. Solutions include: (i) common data models (OMOP, FHIR) and concept mapping; (ii) robust 
imputation (Bayesian, multiple imputation with chains, deep generative models); (iii) label curation using weak 
supervision and clinician adjudication; (iv) temporal alignment (“index dates,” sliding windows, landmarking) 
and feature stability selection to prevent leakage; (v) text processing with domain-adapted language models and 
de-identification; and (vi) edge ingestion for CGM/wearables with consent management[15]. 
Governance and consent. Transparent data provenance and dynamic consent allow patients to control secondary 
use. Data minimization and purpose limitation reduce risk. Audit trails document access and transformations. A 
data-trust or institutional review board oversees linkage of clinical and consumer data, with strong community 
representation[16]. 
Quality and drift. Pre-deployment data audits quantify completeness, missingness, and label reliability; 
post-deployment data drift monitors distribution changes (e.g., new assay platforms, medication guidelines) that 
can degrade model performance. Synthetic data can aid testing but must be rigorously privacy-screened[16]. 
Equity from the start. Representation of under-served groups, localization to diet/culture, and capture of 
language and health-literacy markers reduce downstream bias. Collecting SDOH enables deconfounding and 
fairness auditing. 
3. Predictive Analytics for Risk, Progression, and Complications 
Incident T2D prediction. Supervised models trained on EHR/claims (age, BMI, lipids, HbA1c, BP, meds, 
SDOH) forecast conversion from prediabetes to T2D. Gradient boosting, survival forests, and deep survival 
neural nets handle censoring and time-varying covariates; calibration (reliability curves, Brier scores) ensures 
risk probabilities are trustworthy. External validation across health systems and geographies tests 
transportability[17]. 
Progression and treatment response. Models forecast HbA1c trajectories, medication intensification, weight 
change, and likelihood of remission after lifestyle, pharmacotherapy (GLP-1/SGLT2/TZD), or bariatric 
surgery[18]. Counterfactual frameworks (causal forests, targeted learning) estimate individualized treatment 
effects, supporting therapy matching. Sequence models ingest longitudinal labs/meds to predict who benefits 
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from adding an SGLT2 inhibitor versus a GLP-1 RA given comorbid HF/CKD/ASCVD and prior 
responses[19]. 
Hypoglycemia and adverse events. CGM-based sequence models (temporal CNNs, LSTMs, transformers) 
predict near-term hypoglycemia and nocturnal events; joint models including insulin doses and meals offer 
proactive alerts. For SGLT2 inhibitors, risk screens for euglycemic ketoacidosis incorporate context (illness, 
fasting, low-carb diets). For TZDs, edema and fracture risk models guide selection[20]. 
Complications and organ risk. Multi-task learning predicts retinopathy, neuropathy, nephropathy 
progression, NAFLD/NASH transitions, and cardiovascular events. Imaging-augmented models incorporate 
CAC scores, liver fat/fibrosis measures. Graph neural networks capture relationships among diagnoses and 
outcomes; competing-risk survival models estimate probabilities across endpoints over time[21, 22]. 
Explainability and actionability. Beyond SHAP plots, counterfactual explanation (“what minimal change 
reduces risk?”) enables coaching (e.g., earlier meal window, increased steps, medication add-on). Uncertainty 
quantification flags cases for human review[23]. 
Evaluation. Discrimination (AUROC, AUPRC), calibration (ECE), clinical utility (decision curves, NRI), and 
impact (change in HbA1c/weight/events in trials) form a complete scorecard. Subgroup performance and 
fairness metrics (equalized odds, demographic parity gaps) are mandatory[24]. 
4. Digital Phenotyping and Patient Stratification 
Population-level averages obscure meaningful heterogeneity. Unsupervised learning (clustering, mixture 
models, topic models for codes, autoencoders, variational inference) on longitudinal EHR/CGM/wearable data 
discovers endotypes that share pathophysiology and treatment response[25]. Examples include: (i) predominant 
hepatic IR with fasting hyperglycemia and NAFLD; (ii) peripheral/muscle IR with postprandial spikes; (iii) 

β-cell-limited phenotype with low first-phase insulin; (iv) inflammasome-dominant phenotype with elevated 
CRP and sleep apnea; and (v) circadian misalignment with late eating and short sleep. Trajectory clustering 
groups patients by weight, HbA1c, or CGM time-in-range evolution[26]. 
Phenotype validation requires triangulation: biological plausibility (omics, imaging), differential outcomes in 
retrospective cohorts, and prospective enrichment in trials. Hybrid approaches combine clinician-defined rules 
with learned embeddings (semi-supervised learning). Phenotype portability is tested across institutions and 
cultures; label shift is handled by domain adaptation[27]. 
Therapy matching. Once stable, endotypes inform treatment policies: GLP-1 RA first for 
hyperphagic/obesity-dominant; SGLT2 inhibition for HF/CKD; TZD for severe IR/NAFLD with low edema 
risk; chrononutrition and sleep therapy for misalignment; bariatric surgery for high-BMI/poor medication 
response. RL can learn policy improvement from logged data while respecting safety constraints[28, 29]. 
N-of-1 learning. Within-person models built from CGM, meal logs, and wearables identify personal triggers 
(late rice/chapati meals, poor sleep, stress) and optimal countermeasures (fiber-first sequence, post-meal walk, 
earlier eating window). Bayesian hierarchical models borrow strength across similar patients while preserving 
individuality[30, 31]. 
Equity. Digital phenotypes must reflect diverse diets, languages, and schedules. Community co-design ensures 
clusters are interpretable and culturally relevant, preventing stigmatizing labels and ensuring access to matched 
interventions. 
5. Decision Support, Personalization, and Digital Twins 
Clinical decision support (CDS). Rules-plus-ML systems surface timely suggestions: add SGLT2 inhibitor in 
T2D with CKD; consider GLP-1 RA for ASCVD/obesity; evaluate OSA with STOP-Bang; propose eTRE for 
late eaters. Human-in-the-loop workflows let clinicians accept, modify, or reject suggestions with rationale 
capture for continual learning[32]. 
Recommender systems. Using CGM and meal/activity logs, recommend meals with predicted lower glucose 
spikes, suggest post-meal walks, or reorder meal sequence (vegetable/protein then starch). Contextual bandits 
balance exploration/exploitation to learn preferences and glycemic responses without large risks[33]. 
Reinforcement learning (RL). RL policies personalize insulin titration, metformin add-on timing, or GLP-1 
RA dose advancement, subject to safety constraints and clinician oversight. For lifestyle, RL schedules activity 
prompts and meal-timing nudges based on chronotype and daily energy expenditure. Safe RL incorporates 
control barriers to avoid hypoglycemia or over-restriction[34]. 
Digital twins. Multimodal patient-specific models simulate metabolic responses to diet patterns (low-carb vs 
Mediterranean), meal timing, pharmacotherapy combinations, or bariatric surgery. Twins integrate 
physiological models (glucose–insulin) with data-driven components to forecast HbA1c, weight, and organ 
outcomes; they support shared decision-making by visualizing trade-offs (e.g., LDL-C vs TG response)[35]. 
Closing the loop. For non-insulin-treated T2D, near-real-time “closed loop” coaching (CGM-triggered 
messages) reduces variability and time above range. For basal-bolus regimens, adaptive algorithms propose dose 
changes with clinician confirmation[36]. 
Pragmatic evaluation. A/B tests and stepped-wedge trials measure outcome changes and clinician/patient 
workload. User experience design minimizes alert fatigue and promotes adherence; behavioral economics 
(commitment devices, timely defaults) enhances engagement[37]. 
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6. Implementation, Safety, Privacy, and Equity 
Workflow integration. Embed CDS in EHR with single-click actions, order sets, and smart defaults; surface 
predictions at teachable moments (e.g., when reviewing CGM). Offer patient-facing summaries in plain language 
and local languages[38]. 
MLOps and safety. Monitor models for performance, calibration, data drift, and fairness. Establish incident 
response for model errors; log predictions, actions, and outcomes with auditability. Use champion–challenger 
deployments to update safely. Maintain model cards and data sheets documenting intent, training sets, and 
limitations[39]. 
Fairness and bias mitigation. Preempt bias via representative sampling, re-weighting, adversarial debiasing, 
and counterfactual fairness audits. Evaluate subgroup performance (sex, age, ethnicity, socioeconomic status) 
and mitigate disparities. Avoid using proxies for race as causal drivers; focus on SDOH and access variables to 
allocate resources equitably[40]. 
Privacy and security. Apply federated learning and secure aggregation for cross-site training; add differential 
privacy to updates; use homomorphic encryption for select computations. Enforce least-privilege access and 
continuous security testing. Provide transparent consent and opt-out pathways for secondary data use[41]. 
Regulatory and ethical considerations. Classify tools appropriately (risk-based) and align with clinical 
governance. Distinguish “locked” vs “adaptive” algorithms; define update cadence and re-approval processes. 
Ensure explainability at the right level: global feature importance for oversight; local rationale for actionability. 
Adopt participatory design with patients and clinicians; align incentives so AI reinforces—not replaces—
relationships. 
Equity and access. Design for low-resource settings: SMS-based coaching, offline-capable apps, edge AI on 
low-cost phones, integration with community health workers, and culturally adapted content. Evaluate 
affordability and digital literacy; provide loaner devices or clinic-based CGM trials where feasible. Measure 
patient-important outcomes (energy, sleep, function) alongside biomedical metrics[42, 43]. 
7. Horizons: Multimodal Foundation Models, Synthetic Data, and Copilot Workflows 
Foundation models. Self-supervised pretraining on multimodal health data—notes (NLP), time series 
(CGM/wearables), images (liver MRI/ultrasound), and codes—produces generalizable representations that 
fine-tune for tasks (risk, response prediction, summarization). Contrastive learning aligns modalities (e.g., CGM 

↔ meals, EHR ↔ imaging)[44]. 
Generative AI and synthetic data. Diffusion models and generative adversarial networks synthesize realistic 
CGM traces, EHR sequences, and liver fat images to augment training and stress-test pipelines. 
Privacy-preserving generation with membership-inference defenses is essential. Synthetic cohorts support 
power calculations and scenario planning (e.g., medication shortages)[45]. 
Causal and mechanistic hybrids. Blend structural causal models and physiological simulators with learned 
embeddings to improve counterfactual validity and extrapolation beyond observed data. Use in silico trials to 
propose adaptive trial designs focused on high-risk endotypes[46]. 
Copilot workflows. Large language model (LLM) copilots summarize longitudinal charts, draft 
patient-friendly plans, explain trade-offs, generate orders from CDS suggestions, and triage inbox messages 
always with clinician oversight. Patient-facing copilots translate CGM into daily actions, coordinate meal timing 
with chronotype, and support medication adherence[47]. 
Edge and ambient computing. On-device inference preserves privacy and reduces latency for CGM-triggered 
coaching; ambient sensors (home BP scales, smartwatches) feed continuous phenotyping. Interoperability via 
FHIR APIs enables plug-and-play modules[48]. 
Evaluation science. Move beyond AUROC to cost-effectiveness, clinician time saved, equity impact, and 
sustainability metrics. Open benchmarks with diverse populations and robust baselines accelerate progress while 
preventing hype cycles. 

CONCLUSION 
AI and big data can convert the complexity of obesity-associated T2D into timely, individualized action. The 
opportunity spans the care continuum: predict risk and trajectories before complications arise; stratify into 
mechanistic endotypes that guide therapy; personalize nutrition, activity, pharmacotherapy, and surgical 
referral; and monitor response to prevent relapse. Realizing this promise requires rigorous data engineering, 
external validation, calibration, and safety monitoring; governance that protects privacy; and design choices that 
promote fairness and clinician–patient partnership. Federated and privacy-preserving learning broaden access 
to diverse data, while MLOps ensures models remain reliable as practice and populations evolve. Looking 
forward, multimodal foundation models, causal-mechanistic hybrids, and copilot interfaces will enable digital 
twins that illuminate trade-offs and support shared decisions. The pragmatic mandate is to start simple—
high-value CDS embedded in workflows then iterate with measurement and community co-design. Done 
thoughtfully, AI will help bend the curve on diabesity by delivering earlier, more precise, and more equitable 
metabolic care. 
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