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ABSTRACT

Artificial intelligence (AI) and big data are reshaping how we understand, predict, and manage
obesity-associated type 2 diabetes (T2D). The diabesity phenotype arises from heterogeneous interactions
among genes, behaviors, environments, and health-care systems. At scale, routinely collected data electronic
health records (EHRs), pharmacy claims, continuous glucose monitoring (CGM), wearables, meal logs, imaging,
multi-omics, and social determinants of health (SDOH) capture this complexity but are noisy, incomplete, and
biased. Modern machine-learning (ML) methods can transform these substrates into actionable insights:
predicting incident T2D and complications; detecting subclinical trajectories; stratifying patients into
mechanistic endotypes; recommending individualized nutrition, activity, and pharmacotherapy; and monitoring
for relapse or adverse events. Time-series deep learning, survival modeling, graph neural networks, and causal
inference frameworks enable robust forecasting and counterfactual reasoning, while reinforcement learning (RL)
personalizes dynamic regimens. However, translation hinges on trustworthy data engineering, external
validation, calibration, explainability, privacy, and equity. Federated learning and differential privacy protect
data; fairness auditing and participatory design mitigate bias; and MLOps governs monitoring, drift detection,
and post-deployment updates. Integrating Al into clinical workflows requires human-in-the-loop decision
support, interoperable standards, and pragmatic evaluation focused on outcomes that matter to patients and
systems. This review synthesizes the data foundations, predictive analytics, digital phenotyping, and
decision-support paradigms relevant to diabesity; outlines implementation, safety, and governance
requirements; and maps a path toward multimodal, foundation-model-enabled “digital twins” that couple
physiology with behavior to modify disease trajectories. Done well, Al augments not replaces clinicians and
patients, enabling earlier intervention, precise therapy matching, and durable cardiometabolic risk reduction.
Keywords: machine learning; continuous glucose monitoring; digital phenotypes; federated learning; precision
diabetes care

INTRODUCTION

Type 2 diabetes (T2D) linked to obesity often termed “diabesity” is common, costly, and heterogeneous. Despite
effective lifestyle, pharmacologic, and surgical tools, many patients experience therapeutic inertia, fragmented
care, and preventable complications. Three realities motivate Al-enabled transformation[1—47. First, the
biology is complex: insulin resistance (IR) and B-cell dysfunction emerge from interactions among adipose,
hepatic, muscular, islet, vascular, immune, and neural networks shaped by diet, sleep/circadian patterns, physical
activity, medications, psychosocial stress, and the built environment[5, 67. Second, the data now exist to observe
this complexity: EHRs record diagnoses, labs, vitals, procedures, medication exposures, and unstructured notes;
CGM provides minute-level glucose dynamics; wearables capture steps, heart rate variability, sleep staging, and
energy expenditure; nutrition apps reveal timing and composition; imaging quantifies visceral fat and hepatic
steatosis; genomics/epigenomics/metabolomics detail molecular states; and SDOH datasets index
neighborhood deprivation, food access, pollution, and transportation[77]. Third, traditional guidelines and
single-risk-factor thresholds cannot fully exploit these data to tailor care in real time.

Al brings pattern recognition, forecasting, and decision optimization to this landscape. Supervised learning can
predict incident T2D, hospitalization, hypoglycemia, or progression to insulin; survival models estimate
time-to-event under competing risks; sequence models (temporal convolutional networks, transformers) learn
from CGM and medication histories; and graph neural networks capture relationships among patients,
clinicians, and codes[87]. Unsupervised and self-supervised learning extract latent structure for digital
phenotyping endotypes that explain why one patient responds to a GLP-1 receptor agonist while another
benefits more from an SGLT2 inhibitor or thiazolidinedione[87]. Causal inference methods targeted maximum
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likelihood estimation, doubly robust learners, instrumental variables, and causal forests help move beyond
correlation toward estimating individualized treatment effects. RL and contextual bandits personalize sequential
decisions: meal timing, macronutrient distribution, activity prompts, and medication titration.

Yet predictive accuracy is insufficient. For clinical utility, models must be calibrated, externally validated, and
explainable enough for safe action. They must handle missingness, label noise, and dataset shift; respect privacy
and consent; and avoid amplifying structural bias. Federated learning allows cross-institutional training without
centralizing raw data, while differential privacy and secure aggregation mitigate re-identification risk.
Deployment requires interoperable standards (e.g., FHIR), clinician-friendly interfaces, and evaluation in
pragmatic trials or stepped-wedge implementations that measure HbAlc, weight, cardiovascular/renal
outcomes, utilization, and patient-reported outcomes[9, 107]. Post-deployment, MLOps monitors drift, fairness
metrics, and safety signals, updating models with governance and auditability. This review proceeds in six parts.
Section 1 outlines data foundations: multimodal sources, preprocessing, interoperability, and governance.
Section 2 covers predictive analytics for risk, progression, and complications using time-series and graph
methods. Section 8 details digital phenotyping and patient stratification to guide therapy. Section 4 focuses on
decision support and personalization rules, recommendations, RL, and digital twins. Section 5 addresses
implementation, safety, equity, privacy, and regulation, including federated learning and differential privacy.
Section 6 looks ahead to multimodal foundation models, synthetic data, and clinician/copilot workflows. We
close with a practical conclusion on building trustworthy, equitable AI that augments human expertise to
prevent and manage diabesity.

2. Data Foundations for Al in Diabesity: Sources, Engineering, and Governance

Modern diabesity Al depends on multimodal data assembled over time:

EHR/claims: diagnoses (ICD), procedures (CPT), labs (HbA1c, lipids, ALT, eGFR), vitals, medication
orders/fill patterns, and clinical notes. Free-text notes and scanned documents carry context (diet, adherence,
housing) accessible via natural language processing (NLP)[117.

CGM/time series: minute-level glucose enabling features (time-in-range, glycemic variability, rate-of-change,
dawn phenomenon indices) and raw sequences for deep models[127].

Wearables/phones: steps, heart rate, HRV, sleep duration/regularity/staging, circadian alignment,
location-derived activity spaces, and app-based nutritional timing[[127].

Imaging: DEXA, CT/MRI for visceral/subcutaneous fat and liver fat (MRI-PDFF), and ultrasound
elastography for fibrosis[137.

Multi-omics: genomics (polygenic risk scores), epigenomics (methylation),
transcriptomics/proteomics/metabolomics/lipidomics to capture pathways (inflammation, mitochondrial,
adipokine signaling)[147].

SDOH/ environment: neighborhood deprivation indices, food deserts, walkability, air quality, temperature, and
transportation.

Engineering challenges. Data are messy: missing not at random, irregular sampling, coding drift, and site
heterogeneity. Solutions include: (i) common data models (OMOP, FHIR) and concept mapping; (ii) robust
imputation (Bayesian, multiple imputation with chains, deep generative models); (iii) label curation using weak
supervision and clinician adjudication; (iv) temporal alignment (“index dates,” sliding windows, landmarking)
and feature stability selection to prevent leakage; (v) text processing with domain-adapted language models and
de-identification; and (vi) edge ingestion for CGM/wearables with consent management[157.

Governance and consent. Transparent data provenance and dynamic consent allow patients to control secondary
use. Data minimization and purpose limitation reduce risk. Audit trails document access and transformations. A
data-trust or institutional review board oversees linkage of clinical and consumer data, with strong community
representation[ 167].

Quality and drift. Pre-deployment data audits quantify completeness, missingness, and label reliability;
post-deployment data drift monitors distribution changes (e.g., new assay platforms, medication guidelines) that
can degrade model performance. Synthetic data can aid testing but must be rigorously privacy-screened[ 167].
Equity from the start. Representation of under-served groups, localization to diet/culture, and capture of
language and health-literacy markers reduce downstream bias. Collecting SDOH enables deconfounding and
fairness auditing.

3. Predictive Analytics for Risk, Progression, and Complications

Incident T2D prediction. Supervised models trained on EHR/claims (age, BMI, lipids, HbA1c, BP, meds,
SDOH) forecast conversion from prediabetes to T2D. Gradient boosting, survival forests, and deep survival
neural nets handle censoring and time-varying covariates; calibration (reliability curves, Brier scores) ensures
risk probabilities are trustworthy. External validation across health systems and geographies tests
transportability[177].

Progression and treatment response. Models forecast HbA1c trajectories, medication intensification, weight
change, and likelihood of remission after lifestyle, pharmacotherapy (GLP-1/SGLT2/TZD), or bariatric
surgery[ 187]. Counterfactual frameworks (causal forests, targeted learning) estimate individualized treatment
effects, supporting therapy matching. Sequence models ingest longitudinal labs/meds to predict who benefits
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from adding an SGLT2 inhibitor versus a GLP-1 RA given comorbid HF/CKD/ASCVD and prior
responses[ 197].

Hypoglycemia and adverse events. CGM-based sequence models (temporal CNNs, LSTMs, transformers)
predict near-term hypoglycemia and nocturnal events; joint models including insulin doses and meals offer
proactive alerts. For SGLT?2 inhibitors, risk screens for euglycemic ketoacidosis incorporate context (illness,
fasting, low-carb diets). For TZDs, edema and fracture risk models guide selection[[207].

Complications and organ risk. Multi-task learning predicts retinopathy, neuropathy, nephropathy
progression, NAFLD/NASH transitions, and cardiovascular events. Imaging-augmented models incorporate
CAC scores, liver fat/fibrosis measures. Graph neural networks capture relationships among diagnoses and
outcomes; competing-risk survival models estimate probabilities across endpoints over time[21, 227].
Explainability and actionability. Beyond SHAP plots, counterfactual explanation (“what minimal change
reduces risk?”) enables coaching (e.g., earlier meal window, increased steps, medication add-on). Uncertainty
quantification flags cases for human review[237].

Evaluation. Discrimination (AUROC, AUPRC), calibration (ECE), clinical utility (decision curves, NRI), and
impact (change in HbA1lc/weight/events in trials) form a complete scorecard. Subgroup performance and
fairness metrics (equalized odds, demographic parity gaps) are mandatory[24].

4. Digital Phenotyping and Patient Stratification

Population-level averages obscure meaningful heterogeneity. Unsupervised learning (clustering, mixture
models, topic models for codes, autoencoders, variational inference) on longitudinal EHR/CGM/wearable data
discovers endotypes that share pathophysiology and treatment response[[257]. Examples include: (i) predominant
hepatic IR with fasting hyperglycemia and NAFLD; (ii) peripheral/muscle IR with postprandial spikes; (iii)
B-cell-limited phenotype with low first-phase insulin; (iv) inflammasome-dominant phenotype with elevated
CRP and sleep apnea; and (v) circadian misalignment with late eating and short sleep. Trajectory clustering
groups patients by weight, HbAlc, or CGM time-in-range evolution[267].

Phenotype validation requires triangulation: biological plausibility (omics, imaging), differential outcomes in
retrospective cohorts, and prospective enrichment in trials. Hybrid approaches combine clinician-defined rules
with learned embeddings (semi-supervised learning). Phenotype portability is tested across institutions and
cultures; label shift is handled by domain adaptation[277].

Therapy matching. Once stable, endotypes inform treatment policies: GLP-1 RA first for
hyperphagic/obesity-dominant; SGLT2 inhibition for HF/CKD; TZD for severe IR/NAFLD with low edema
risk; chrononutrition and sleep therapy for misalignment; bariatric surgery for high-BMI/poor medication
response. RL can learn policy improvement from logged data while respecting safety constraints[28, 297].
N-of-1 learning. Within-person models built from CGM, meal logs, and wearables identify personal triggers
(late rice/chapati meals, poor sleep, stress) and optimal countermeasures (fiber-first sequence, post-meal walk,
earlier eating window). Bayesian hierarchical models borrow strength across similar patients while preserving
individuality[30, 317.

Equity. Digital phenotypes must reflect diverse diets, languages, and schedules. Community co-design ensures
clusters are interpretable and culturally relevant, preventing stigmatizing labels and ensuring access to matched
interventions.

5. Decision Support, Personalization, and Digital Twins

Clinical decision support (CDS). Rules-plus-ML systems surface timely suggestions: add SGLT2 inhibitor in
T2D with CKD; consider GLP-1 RA for ASCVD/obesity; evaluate OSA with STOP-Bang; propose eTRE for
late eaters. Human-in-the-loop workflows let clinicians accept, modify, or reject suggestions with rationale
capture for continual learning[[327].

Recommender systems. Using CGM and meal/activity logs, recommend meals with predicted lower glucose
spikes, suggest post-meal walks, or reorder meal sequence (vegetable/protein then starch). Contextual bandits
balance exploration/exploitation to learn preferences and glycemic responses without large risks[337].
Reinforcement learning (RL). RL policies personalize insulin titration, metformin add-on timing, or GLP-1
RA dose advancement, subject to safety constraints and clinician oversight. For lifestyle, RL schedules activity
prompts and meal-timing nudges based on chronotype and daily energy expenditure. Safe RL incorporates
control barriers to avoid hypoglycemia or over-restriction[ 84 ].

Digital twins. Multimodal patient-specific models simulate metabolic responses to diet patterns (low-carb vs
Mediterranean), meal timing, pharmacotherapy combinations, or bariatric surgery. Twins integrate
physiological models (glucose—insulin) with data-driven components to forecast HbAlc, weight, and organ
outcomes; they support shared decision-making by visualizing trade-offs (e.g., LDL-C vs TG response)[35].
Closing the loop. For non-insulin-treated T2D, near-real-time “closed loop” coaching (CGM-triggered
messages) reduces variability and time above range. For basal-bolus regimens, adaptive algorithms propose dose
changes with clinician confirmation[867].

Pragmatic evaluation. A/B tests and stepped-wedge trials measure outcome changes and clinician/patient
workload. User experience design minimizes alert fatigue and promotes adherence; behavioral economics
(commitment devices, timely defaults) enhances engagement[377].
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6. Implementation, Safety, Privacy, and Equity
Workflow integration. Embed CDS in EHR with single-click actions, order sets, and smart defaults; surface
predictions at teachable moments (e.g., when reviewing CGM). Offer patient-facing summaries in plain language
and local languages[387].
MLOps and safety. Monitor models for performance, calibration, data drift, and fairness. Establish incident
response for model errors; log predictions, actions, and outcomes with auditability. Use champion—challenger
deployments to update safely. Maintain model cards and data sheets documenting intent, training sets, and
limitations[ 397].
Fairness and bias mitigation. Preempt bias via representative sampling, re-weighting, adversarial debiasing,
and counterfactual fairness audits. Evaluate subgroup performance (sex, age, ethnicity, socioeconomic status)
and mitigate disparities. Avoid using proxies for race as causal drivers; focus on SDOH and access variables to
allocate resources equitably[407].
Privacy and security. Apply federated learning and secure aggregation for cross-site training; add differential
privacy to updates; use homomorphic encryption for select computations. Enforce least-privilege access and
continuous security testing. Provide transparent consent and opt-out pathways for secondary data use[417].
Regulatory and ethical considerations. Classify tools appropriately (risk-based) and align with clinical
governance. Distinguish “locked” vs “adaptive” algorithms; define update cadence and re-approval processes.
Ensure explainability at the right level: global feature importance for oversight; local rationale for actionability.
Adopt participatory design with patients and clinicians; align incentives so Al reinforces—not replaces—
relationships.
Equity and access. Design for low-resource settings: SMS-based coaching, oftline-capable apps, edge Al on
low-cost phones, integration with community health workers, and culturally adapted content. Evaluate
affordability and digital literacy; provide loaner devices or clinic-based CGM trials where feasible. Measure
patient-important outcomes (energy, sleep, function) alongside biomedical metrics[42, 437].
7. Horizons: Multimodal Foundation Models, Synthetic Data, and Copilot Workflows
Foundation models. Self-supervised pretraining on multimodal health data—notes (NLP), time series
(CGM/wearables), images (liver MRI/ultrasound), and codes—produces generalizable representations that
fine-tune for tasks (risk, response prediction, summarization). Contrastive learning aligns modalities (e.g., CGM
<> meals, EHR <> imaging)[447].
Generative Al and synthetic data. Diffusion models and generative adversarial networks synthesize realistic
CGM traces, EHR sequences, and liver fat images to augment training and stress-test pipelines.
Privacy-preserving generation with membership-inference defenses is essential. Synthetic cohorts support
power calculations and scenario planning (e.g., medication shortages)[45].
Causal and mechanistic hybrids. Blend structural causal models and physiological simulators with learned
embeddings to improve counterfactual validity and extrapolation beyond observed data. Use in silico trials to
propose adaptive trial designs focused on high-risk endotypes[467].
Copilot workflows. Large language model (LLM) copilots summarize longitudinal charts, draft
patient-friendly plans, explain trade-offs, generate orders from CDS suggestions, and triage inbox messages
always with clinician oversight. Patient-facing copilots translate CGM into daily actions, coordinate meal timing
with chronotype, and support medication adherence[477].
Edge and ambient computing. On-device inference preserves privacy and reduces latency for CGM-triggered
coaching; ambient sensors (home BP scales, smartwatches) feed continuous phenotyping. Interoperability via
FHIR APIs enables plug-and-play modules[487].
Evaluation science. Move beyond AUROC to cost-effectiveness, clinician time saved, equity impact, and
sustainability metrics. Open benchmarks with diverse populations and robust baselines accelerate progress while
preventing hype cycles.

CONCLUSION
Al and big data can convert the complexity of obesity-associated T2D into timely, individualized action. The
opportunity spans the care continuum: predict risk and trajectories before complications arise; stratify into
mechanistic endotypes that guide therapy; personalize nutrition, activity, pharmacotherapy, and surgical
referral; and monitor response to prevent relapse. Realizing this promise requires rigorous data engineering,
external validation, calibration, and safety monitoring; governance that protects privacy; and design choices that
promote fairness and clinician—patient partnership. Federated and privacy-preserving learning broaden access
to diverse data, while MLOps ensures models remain reliable as practice and populations evolve. Looking
forward, multimodal foundation models, causal-mechanistic hybrids, and copilot interfaces will enable digital
twins that illuminate trade-offs and support shared decisions. The pragmatic mandate is to start simple—
high-value CDS embedded in workflows then iterate with measurement and community co-design. Done
thoughtfully, AT will help bend the curve on diabesity by delivering earlier, more precise, and more equitable
metabolic care.
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