www.idosr.or, Mwende, 2026

International Digital Organization for Scientific Research IDOSRJBCP/26/102.1700
IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY 11(1):8-14, 2026.
https://doi.org/10.59298/IDOSR/JBCP/26/102.814

Artificial Intelligence-Guided Nanoformulations for
Personalized Management of Obesity and Diabetes

Mwende Muthoni D.

Faculty of Medicine Kampala International University Uganda

ABSTRACT
Obesity and type 2 diabetes are heterogeneous, chronic disorders driven by complex genetic, behavioral and
environmental factors, leading to widely variable responses to lifestyle and pharmacologic therapies.
Conventional treatment paradigms rely on population averages rather than individual biology, contributing to
suboptimal control, weight regain and treatment failure. Nanotechnology offers powerful tools to enhance
bioavailability, tissue targeting and safety of metabolic therapeutics, while artificial intelligence (AI) provides
data-driven methods for pattern discovery, prediction and optimization across high-dimensional clinical,
biochemical and behavioral datasets. Integrating Al with nanoformulation design and deployment enables a new
paradigm: Al-guided nanotherapies tailored to the molecular, phenotypic and lifestyle profile of individual
patients with obesity and diabetes. This review explores how Al can support rational design of nanoformulations
(materials selection, composition, size, surface chemistry), predict pharmacokinetics and tissue distribution, and
match patients to specific nano-enabled interventions. It discusses emerging examples of machine learning in
nanomedicine and metabolic disease management, the role of digital biomarkers and multi-omics in building
personalized models, and the architecture of closed-loop systems that couple Al analytics with smart
nanocarriers and sensors. Key ethical, regulatory and equity considerations are addressed, and future directions
for Al-nano convergence in “precision diabesity” are outlined.
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INTRODUCTION

Obesity and type 2 diabetes mellitus (T2DM) are no longer viewed as uniform entities but as syndromes
encompassing distinct biological subtypes, shaped by genetics, epigenetics, gut microbiota, early-life exposures,
diet, physical inactivity and social determinants of health[ 1-37. Clinical classifications such as BMI, fasting
glucose and HbA1lc capture only part of this diversity. Patients with similar BMI and HbAlc may differ
markedly in fat distribution, hepatic and muscular insulin resistance, 3-cell reserve, inflammatory tone and
response to medications[47]. Large cohort analyses and clustering studies have identified reproducible T2DM
subgroups based on age of onset, BMI, autoimmunity, insulin secretion and resistance indices, with differential
risks for complications and variable responses to therapies[5, 5, 6.

This heterogeneity helps explain why population-derived guidelines often fail at the individual level. A drug
that produces average weight loss and glycemic improvement in randomized trials may yield limited benefit or
intolerable side effects in particular patients. Even highly effective new agents such as GLP-1/GIP receptor
agonists show wide interindividual variability in weight loss and glycemic outcomes and raise questions about
long-term tolerability, cost and access[7]. Meanwhile, lifestyle interventions, although foundational, are
notoriously hard to sustain over time. There is a growing consensus that precision strategies—matching
therapies to the biology and behavior of each individual—are needed to improve durability and safety of obesity
and diabetes management[8—10].

Nanotechnology offers complementary capabilities. Nanoformulations, including lipid nanoparticles, polymeric
nanoparticles, liposomes, micelles and hybrid nanosystems, can improve the pharmacokinetic and
pharmacodynamic profiles of metabolic drugs and nutraceuticals by enhancing solubility, stability, tissue
targeting and controlled release[11-187. For obesity and diabetes, nanoformulations have been explored to
increase bioavailability and reduce gastrointestinal side effects of plant polyphenols and metformin-like agents,
to target anti-inflammatory or browning compounds to adipose tissue, and to deliver nucleic acids or peptides
to liver or pancreatic islets. In principle, nanoformulation parameters—particle size, surface charge, ligand
density, core composition—can be tuned to target specific depots (for example, visceral adipose, fatty liver) or
immune and stromal cells implicated in diabesity. However, the design space is huge and highly non-linear:
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small changes in composition or process conditions can alter stability, biodistribution and immunogenicity in
unpredictable ways[14—167.
Artificial intelligence, particularly machine learning (ML) and deep learning, excels at uncovering complex
relationships in high-dimensional data. In drug discovery and formulation science, ML models already predict
solubility, permeability, toxicity and nano—bio interactions from molecular and materials descriptors[16, 17.
In diabetes care, Al has been used to forecast glucose excursions from continuous glucose monitoring (CGM)
data, support insulin dosing, and predict T2DM onset and complications from electronic health records and
wearable data. What is emerging is the convergence of these capabilities: Al-guided nanoformulations that are
optimized in silico and then matched to patient-level phenotypes and behavior for personalized metabolic
therapy[18—207].
Conceptually, Al can contribute at several levels. First, during nanoformulation design, ML models can map
relationships between formulation inputs (materials, process parameters), intermediate properties (size,
polydispersity, encapsulation efficiency, zeta potential) and outputs (stability, cellular uptake, organ distribution)
to accelerate optimization and reduce trial-and-error[217. Generative Al models can propose novel nanocarrier
structures or ligand combinations predicted to achieve specific targeting and release profiles. Second, at the
interface with the patient, Al can integrate multi-omics (genomic, transcriptomic, metabolomic, microbiome),
imaging (MRI or ultrasound-based adiposity measures), CGM, wearable activity and diet logs to characterize
each individual’s metabolic state and trajectory. These models can then recommend nano-enabled interventions
most likely to succeed, adjust dosing and scheduling, and anticipate side effects[217].
Third, in a more advanced vision, AI may be embedded into closed-loop systems where nanoformulations,
sensors and algorithms interact dynamically. Smart nanocarriers might change release rates in response to local
cues (pH, enzymes, temperature), while external Al platforms process CGM and wearable data to modulate
injection timing or to switch between different nanoformulations over time[22, 237. For example, a system
could intensify adipose-targeted anti-inflammatory nanotherapy during periods of weight regain and high
inflammatory markers, while tapering back during sustained lifestyle adherence and GLP-1-induced weight
loss.
The promise of Al-guided nanoformulations for diabesity lies in combining mechanistic control at the nanoscale
with personalized decision-making at the patient level. Yet there are substantial challenges 24—267. Data
scarcity and bias in nanomedicine, heterogeneity of clinical datasets, explainability, regulatory acceptance and
equity concerns all need to be addressed. There is also a risk of over-engineering solutions that are
technologically elegant but impractical or unaffordable for those most affected by obesity and diabetes. The
following sections examine the technical foundations and early applications of Al in nanoformulation design,
the construction of patient-specific models in metabolic disease, and the architecture and governance of Al-nano
systems for personalized management of obesity and diabetes[24, 257.

2. Al in Nanoformulation Design and Optimization
Nanoformulation development has traditionally relied on empirical screening: researchers vary materials,
surfactants, solvent ratios and process conditions, then measure size, encapsulation, stability and in vitro
performance[277]. This process is labor- and time-intensive and can miss optimal combinations. ML approaches
now offer more systematic routes. Supervised models such as random forests, support vector machines and
neural networks have been trained to predict critical quality attributes of nanoparticles from descriptors of
polymer composition, lipid structures, drug physicochemical properties and processing parameters. Bayesian
optimization and active learning frameworks can iteratively propose new experiments that are maximally
informative, converging on optimal formulations with far fewer laboratory trials[27, 287.
In the context of obesity and diabetes, such Al tools could be used to design nanoformulations that maximize
oral bioavailability of poorly soluble anti-obesity phytochemicals, minimize burst release of GLP-1 analogues,
or tune the circulation half-life of adipose-targeted anti-inflammatory nanoparticles[ 7, 8, 297]. Deep learning
models trained on large nanomaterials databases can also predict protein corona composition and immune cell
interactions, which are important for macrophage-targeted therapies in metabolic tissues.
Generative models variational autoencoders and generative adversarial networks have been explored for de novo
design of molecular structures and could analogously be used for “inverse design” of nanocarriers with desired
size, surface patterns or ligand architectures[307]. Multi-objective optimization can balance trade-offs between
stability, targeting efficiency, drug loading and manufacturability. As standardized nanomedicine databases
grow and reporting practices improve, Al-driven formulation platforms may become integral to early-stage
design of nano-based obesity and diabetes therapies, reducing development costs and accelerating
translation[ 807].

3. Patient-Level Data, Digital Biomarkers and AI Phenotyping in Diabesity
Personalized management requires detailed characterization of each patient’s metabolic profile and its temporal
dynamics. CGM systems generate high-frequency glucose traces, revealing time in range, glycemic variability
and responses to meals, exercise and medications[317]. Wearable devices add continuous streams on physical
activity, heart rate, sleep and sometimes electrodermal activity or temperature. Electronic health records provide
diagnoses, medications, laboratory tests and imaging, while emerging consumer tools capture diet and stress
via apps and ecological momentary assessment[317].
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Machine learning models applied to these multimodal data can identify latent phenotypes of obesity and diabetes
beyond simple BMI or HbA 1c categories. For example, unsupervised clustering of CGM features has revealed
distinct glycemic patterns associated with different risks of complications and responses to insulin therapy[817].
Integration of body composition imaging with laboratory markers and genomics has identified T2DM
subgroups with predominant hepatic steatosis versus visceral adiposity versus B-cell failure. Digital biomarkers
such as postprandial glycemic excursions, sleep-activity rhythms and heart rate variability provide proxies for
insulin sensitivity, autonomic balance and behavioral adherence.
These Al-derived phenotypes can guide nanoformulation selection. A patient with prominent hepatic insulin
resistance and steatosis might be prioritized for liver-targeted nanoformulations delivering AMPK activators
or lipid-lowering agents, whereas a patient with pronounced adipose inflammation and minimal steatosis might
benefit more from adipose-targeted anti-inflammatory nanoparticles or browning inducers[ 24, 327. Those with
erratic eating patterns and high glycemic variability could be candidates for nano-enabled long-acting incretin
formulations combined with Al-based behavioral coaching. Incorporating genomics and pharmacogenomics
further refines stratification, for example highlighting individuals at risk of rare adverse events or differential
drug metabolism[837.
Real-world deployment requires robust, interpretable models that clinicians and patients can trust. Techniques
such as feature attribution, causal modeling and counterfactual explanations can help clarify how Al systems
reach recommendations. Importantly, data sources must be representative of populations disproportionately
affected by diabesity, including individuals in low-resource settings, to avoid amplifying existing inequities.

4. Matching Patients to Nanoformulations: AI-Driven Treatment Recommendation
Once both nanoformulation performance characteristics and patient phenotypes are modeled, Al can act as a
matching engine, recommending nano-enabled interventions that maximize expected benefit while minimizing
risk and cost. This resembles recommendation systems in other domains but with stricter constraints[317].
Supervised learning models can be trained on clinical trial and real-world data linking patient features,
treatments (including nanoformulations when available) and outcomes such as weight change, HbA 1c reduction,
hepatic fat fraction and adverse events[267].
Causal inference methods propensity-score modeling, targeted maximum likelihood estimation and causal
forests can estimate individualized treatment effects, supporting decisions about whether a given patient is more
likely to benefit from, for example, a GLP-1-loaded depot formulation versus an orally delivered
nanoformulation of a polyphenol combination[347]. Reinforcement learning approaches, already applied to
insulin dosing, may be extended to longer time scales, learning policies that adapt treatment sequences based
on observed responses over months[ 347
In practice, Al-guided recommendation engines for nanoformulations would exist within clinical decision-
support systems rather than operate autonomously. They would propose options with estimated probabilities of
achieving agreed-upon goals (for example, 10% weight loss, HbA1c <7%, resolution of steatosis), accompanied
by confidence intervals and explanations[857]. Clinicians and patients could then select from these options,
considering preferences, contraindications and access. As more data accumulate on nano-enabled regimens,
models could be updated in a federated way across institutions, preserving privacy while improving performance.

5. Toward Closed-Loop Systems: Coupling Nanoformulations, Sensors and Al
A longer-term vision involves closed-loop or semi-closed-loop systems that dynamically adjust nanoformulation
dosing and scheduling based on continuous sensing and Al analytics. In diabetes, fully closed-loop glucose
control “artificial pancreas” systems coupling CGM, insulin pumps and control algorithms has already
demonstrated improved time in range and reduced hypoglycemia[257]. Extending this concept to diabesity
management would add new layers: nanoformulations as the therapeutic actuators and multi-analyte sensing as
the input.
Wearable or minimally invasive nano-biosensors can track not only glucose but also lactate, ketones and perhaps
inflammatory markers or adipokines. Al algorithms could integrate these signals with activity and dietary data
to estimate short-term changes in insulin sensitivity, energy expenditure and inflammatory tone[ 36—387. Based
on these estimates, the system might recommend adjusting the frequency of injections of a long-acting adipose-
targeted nanotherapy, altering the timing of oral nanoformulations relative to meals, or temporarily intensifying
a hepatic-targeted nanoformulation during periods of increased steatosis risk (for example, holidays).
Smart nanocarriers themselves can incorporate stimuli-responsive elements that modulate drug release in
response to local pH, enzymes or temperature, effectively implementing a local control loop at the tissue
level[22, 237. Al would operate at a higher systems level, deciding which formulation to use when and in what
dose. Although such architectures remain conceptual, they illustrate how Al and nanotechnology could converge
to create multi-scale control systems for diabesity that combine systemic, tissue-level and microenvironment-
level feedback.

6. Ethical, Regulatory and Equity Considerations
The integration of Al-guided nanoformulations into obesity and diabetes care raises important non-technical
questions[397. First is safety and accountability. Both AI decision-support systems and nanoformulations can
fail in subtle ways: biased data may lead to suboptimal recommendations for underrepresented groups, and
nanocarriers may exhibit rare but serious oft-target effects. Regulatory agencies are developing frameworks for
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“software as a medical device” and for complex biologic—device combinations, but Al-nano hybrids challenge
boundaries. Transparent reporting of training data, model performance across subgroups, and rigorous
preclinical and clinical evaluation of nanoformulations are essential[397].
Second is explainability and consent. Patients and clinicians must understand, at least qualitatively, why a given
Al system recommends a particular nano-enabled therapy. Black-box recommendations risk eroding trust.
Interfaces that show key contributing factors such as high visceral adiposity, particular CGM patterns or
elevated hepatic enzymes can support shared decision-making. Informed consent must cover both
nanoformulation-specific risks (for example, long tissue residence, immunogenicity) and data-driven aspects (for
example, use of personal health data for model training)[397.
Third is equity. Obesity and T2DM disproportionately affect socioeconomically disadvantaged and
marginalized populations, who may have limited access to advanced therapeutics and digital infrastructure.
There is a risk that Al-guided nanoformulations become available only to those in well-resourced settings,
widening disparities. Mitigation strategies include inclusive data collection across diverse populations, cost-
conscious nanoformulation design, integration with low-cost digital platforms (for example, basic smartphones),
and policy measures to ensure coverage for high-impact interventions[40, 417.
Finally, environmental and lifecycle considerations should not be neglected, particularly if large-scale
production of nanoformulations is envisaged. Safe manufacturing, disposal and potential ecological impacts of
nanomaterials require attention.
7. Future Directions: Roadmap for AI-Nano Precision Diabesity Therapies
Several concrete steps can advance the field. On the nanotechnology side, building standardized, publicly
accessible datasets that link formulation parameters, physicochemical properties, in vitro behavior and in vivo
biodistribution and efficacy will provide the substrate for robust AI models. Community-wide efforts to
harmonize reporting standards and ontologies in nanomedicine will increase interoperability and enable meta-
analyses.[ 14, 42]
On the Al side, prospective studies in obesity and diabetes that systematically integrate CGM, wearables,
imaging and multi-omics with treatment and outcome data are needed[437]. These should oversample
populations at highest risk and explicitly evaluate fairness metrics. Hybrid mechanistic-ML models that
combine physiological understanding (for example, minimal models of insulin—glucose dynamics) with data-
driven components may offer better generalization and interpretability than purely black-box approaches[4:37].
Clinically, early applications of Al-guided nanoformulations are likely to focus on high-risk subgroups where
conventional approaches fail: individuals with severe obesity and insulin resistance who are poor responders or
intolerant to current drugs, those with advanced non-alcoholic steatohepatitis, or those with rapid diabetes
progression despite standard care[44]. Pilot trials might compare Al-guided nanoformulation strategies versus
standard-of-care intensification, assessing not only weight and glycemic outcomes but also liver fat,
cardiovascular risk markers and patient-reported outcomes.
Interdisciplinary collaboration will be critical. Materials scientists, computational modelers, endocrinologists,
hepatologists, behavioral scientists, ethicists, and patient representatives must co-design systems that are
scientifically sound, clinically relevant and acceptable to users. Regulatory science initiatives can help clarify
evidentiary requirements and support adaptive approval pathways for AI-nano combination products[44].
Looking further ahead, the convergence of Al-guided nanoformulations with other emerging technologies such
as gene editing, microbiome engineering and advanced bariatric endoscopy could yield integrated platforms that
address multiple axes of diabesity pathophysiology. For example, a combined regimen might pair a liver-
targeted nanoformulation carrying an AMPK activator, an adipose-targeted anti-inflammatory nanotherapy, a
microbiome-modulating synbiotic and an Al-driven coaching app, with dosages and timing continuously
adapted based on sensor data.
CONCLUSION
Artificial intelligence—guided nanoformulations represent a promising frontier for the personalized management
of obesity and diabetes. By uniting the tunable, tissue-specific capabilities of nanomedicine with the pattern-
recognition and predictive power of Al it becomes possible to design, select and adapt therapies to the biological
and behavioral profile of each individual. Early work in Al-driven formulation design, digital phenotyping and
metabolic decision support provides key building blocks, while advances in adipose- and liver-targeted
nanotherapies create a growing palette of interventions. Realizing this vision will require high-quality data,
rigorous validation, attention to safety and equity, and close collaboration across disciplines. If these conditions
are met, Al-nano convergence could help shift diabesity care from reactive, trial-and-error escalation toward
proactive, mechanism-based and patient-tailored strategies, improving outcomes while making better use of
therapeutic resources.
REFERENCES

1. Alzahrani, A.M., Alshobragi, G.A., Alshehri, A.M., Alzahrani, M.S., Alshehri, H.A., Alzhrani, RM,,

Basudan, S., Alkatheeri, A.A., Almutairi, S.A., Alzahrani, Y.A.: Molecular Pharmacology of Glucagon-Like

Peptide 1-Based Therapies in the Management of Type Two Diabetes Mellitus and Obesity. Integr.

Pharm. Res. Pract. 14, 59-72 (2025). https://doi.org/10.2147/IPRP.S503501

11



www.idosr.org Mwende, 2026

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Nnolum-Orji, N.F.,, Kumar, P., Ngema, L.M., Choonara, Y.E.: Adipose tissue NLRP3 inflammasome: a
therapeutic target in obesity and type 2 diabetes mellitus. Drug Discov. Today. 30, 104456 (2025).
https://doi.org/10.1016/j.drudis.2025.1044:56

Ugwu, O.P.-C., Alum, E.U, Okon, M.B., Obeagu, E.I.. Mechanisms of microbiota modulation:
Implications for health, disease, and therapeutic interventions. Medicine (Baltimore). 103, €38088 (2024).
https://doi.org/10.1097/MD.0000000000038088

Alum, E.U.: Optimizing patient education for sustainable self-management in type 2 diabetes. Discov.
Public Health. 22, 44 (2025). https://doi.org/10.1186/512982-025-00445-5

Umoru, G.U,, Atangwho, 1.J., David-Oku, E., Uti, D.E., De Campos, O.C., Udeozor, P.A., Nfona, S.O.,,
Lawal, B.: Modulation of Lipogenesis by Tetracarpidium conophorum Nuts via SREBP-1/ACCA-
1/FASN Inhibition in Monosodium-Glutamate-Induced Obesity in Rats. Nat. Prod. Commun. 20,
1934578X251344035 (2025). https://doi.org/10.1177/1934578X251344035

Acevedo-Romin, A., Pagén-Zayas, N., Velazquez-Rivera, L.I., Torres-Ventura, A.C., Godoy-Vitorino, F.:
Insights into Gut Dysbiosis: Inflammatory Diseases, Obesity, and Restoration Approaches. Int. J. Mol.
Sci. 25,9715 (2024). https://doi.org/10.8390/1jms25179715

Min, S.H.: Mechanisms of Glucagon Receptor Agonism and GLP-1/Glucagon/GIP Receptor Triple
Agonism for Treatment of Diabetes and Obesity. J. Korean Diabetes. 25, 82-88 (2024).
https://doi.org/10.4093/jkd.2024.25.2.82

Allahwala, M.A., Marathe, C.S., Nelson, A.J., Psaltis, P.J., Marathe, J.A.: Established and Emerging
Therapies for Cardiovascular-Kidney-Metabolic Syndrome: Harnessing the Benefits of SGLT-2
Inhibitors, GLP-1 Receptor Agonists, and Beyond. Heart Lung Circ. 34, 995-1005 (2025).
https://doi.org/10.1016/).hlc.2025.07.005

Chai, S., Niu, Y., Liu, F., Wu, S., Yang, Z., Sun, F.: Comparison of GLP-1 Receptor Agonists, SGLT-2
Inhibitors, and DPP-4 Inhibitors as an Add-On Drug to Insulin Combined With Oral Hypoglycemic
Drugs: Umbrella Review. J. Diabetes Res. 2024, 8145388 (2024). https://dol.org/10.1155/2024/814:5388
Obasi, D.C.,, Abba, J.N., Aniokete, U.C., Okoroh, P.N., Akwari, A.Ak.: Evolving Paradigms in Nutrition
Therapy for Diabetes: From Carbohydrate Counting to Precision Diets. Obes. Med. 100622 (2025).
https://doi.org/10.1016/j.0bmed.2025.100622

Omang, W.A., Ugwu, O.P.-C., Wokoma, M.A., Oplekwu, R.I., Atangwho, I.J., Egbung, G.E.: Combined
Hyaluronic Acid Nanobioconjugates Impair CD44-Signaling for Effective Treatment Against Obesity: A
Review of Comparison with Other Actors. Int. J. Nanomedicine. 20, 10101-10126 (2025).
https://doi.org/10.2147/1IN.S529250

Uti, D.E., Atangwho, I.J., Ntaobeten, E., Obeten, UN,, Bawa, I., Agada, S.A., Ukam, C.1.-O., Egbung, G.E.:
Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through
nanotechnology. Discov. Nano. 20, 70 (2025). https://doi.org/10.1186/511671-025-04248-0

Nwuruku, O.A., Ugwu, O.P.-C, Uti, D.E., Edwin, N.: Harnessing nature: plant-derived nanocarriers for

targeted drug delivery in cancer therapy. Phytomedicine Plus. 5, 100828 (2025).
https://doi.org/10.1016/j.phyplu.2025.100828

Anjum, S, Ishaque, S., Fatima, H., Farooq, W., Hano, C., Abbasi, B.H., Anjum, I.: Emerging Applications
of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals. 14, 707
(2021). https://doi.org/10.3390/ph 14080707

Azmi, N.AN, Elgharbawy, AAM.: Advances in Medical Applications: The Quest of Green
Nanomaterials. In: Shanker, U., Hussain, C.M., and Rani, M. (eds.) Handbook of Green and Sustainable
Nanotechnology: Fundamentals, Developments and Applications. pp. 1889—1909. Springer International
Publishing, Cham (2023)

Deshmukh, S.S., Yadav, K.S.: Next-gen cancer therapy: The convergence of artificial intelligence,
nanotechnology, and digital twin. Nanotechnol. 8, 100286 (2025).
https://doi.org/10.1016/j.nxnano.2025.100286

Bhange, M., Telange, D.: Convergence of nanotechnology and artificial intelligence in the fight against
liver cancer: a comprehensive review. Discov. Oncol. 16, 77 (2025). https://doi.org/10.1007/812672-025-
01821-y

Mazumdar, H., Khondakar, K.R., Das, S., Halder, A., Kaushik, A.: Artificial intelligence for personalized
nanomedicine; from material selection to patient outcomes. Expert Opin. Drug Deliv. 22, 85-108 (2025).
https://doi.org/10.1080/17425247.2024.24406 18

Wu, Y., Min, H,, Li, M., Shi, Y., Ma, A., Han, Y., Gan, Y., Guo, X,, Sun, X.: Effect of Artificial Intelligence-
based Health Education Accurately Linking System (AI-HEALS) for Type 2 diabetes self-management:
protocol  for a  mixed-methods study. BMC  Public Health. 23, 1325 (2023).
https://doi.org/10.1186/512889-023-16066-7

Transparency In The reporting of Artificial INtelligence — the TITAN guideline,
https://premierscience.com/pjs-25-950/

Wang, O., Liu, Y., Li, C, Xu, B, Xu, S., Liu, B.: Machine Learning-Enhanced Nanoparticle Design for
Precision Cancer Drug Delivery. Adv. Sci. 12, 03138 (2025). https://doi.org/10.1002/advs.202503138

12



www.idosr.org Mwende, 2026

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

Kaushik, A., Khan, S., Pharasi, N., Mani, S.: Dual pH and ultrasound responsive nanocarriers: A smart
approach in cancer theranostics. J. Drug Deliv. Sci. Technol. 95, 105560 (2024).
https://doi.org/10.1016/j.jddst.2024.105560

Xu, Y., Michalowski, C.B., Koehler, J., Darwish, T., Guccio, N., Alcaino, C., Domingues, 1., Zhang, W,
Marotti, V., Van Hul, M., Paone, P., Koutsoviti, M., Boyd, B.J., Drucker, D.J., Cani, P.D., Reimann, F.,
Gribble, F.M., Beloqui, A.: Smart control lipid-based nanocarriers for fine-tuning gut hormone secretion.
Sci. Adv. 10, eadq9909. https://doi.org/10.1126/sciadv.adq9909

Cepero, A., Luque, C., Cabeza, L., Perazzoli, G., Quifionero, F., Mesas, C., Melguizo, C., Prados, J.:
Antibody-Functionalized Nanoformulations for Targeted Therapy of Colorectal Cancer: A Systematic
Review. Int. J. Nanomedicine. 17, 5065—-5080 (2022). https://doi.org/10.2147/1JN.S368814

Kevadiya, B.D., Woldstad, C., Ottemann, B.M., Dash, P., Sajja, B.R., Lamberty, B., Morsey, B., Kocher, T.,
Dutta, R., Bade, AN,, Liu, Y., Callen, S.E., Fox, H.S., Byrareddy, S.N., McMillan, J.M., Bronich, T.K,,
Edagwa, B.J., Boska, M.D., Gendelman, H.E.: Multimodal Theranostic Nanoformulations Permit
Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution.
Theranostics. 8, 256—276 (2018). https://doi.org/10.7150/thno.22764

Patel, J., Roy, H., Khobragade, D.S., Agrawal, S., Das, N.R,, Patel, R., Patel, V., Lal, P.: Natural lipid-based
nanoformulations for enhancing hepatoprotective activity: mechanisms, efficacy, and clinical translation.
Health Nanotechnol. 1, 11 (2025). https://doi.org/10.1186/544301-025-00010-8

Priani, S.E., Fakih, T.M., Wilar, G., Chaerunisaa, A.Y., Sopyan, I.: Quality by Design and In Silico
Approach in SNEDDS Development: A Comprehensive Formulation Framework. Pharmaceutics. 17, 701
(2025). https://doi.org/10.8390/pharmaceutics 17060701

Alum, E.U,, Ugwu, O.P.-C.: Artificial intelligence in personalized medicine: transforming diagnosis and
treatment. Discov. Appl. Sci. 7, 198 (2025). https://doi.org/10.1007/$42452-025-06625-X

Igbal, N., Ambery, P., Logue, J., Mallappa, A., Sjostréom, C.D.: Perspectives in weight control in diabetes
— SGLT?2 inhibitors and GLP-1-glucagon dual agonism. Diabetes Res. Clin. Pract. 199, 110669 (2023).
https://doi.org/10.1016/j.diabres.2023.110669

Goshisht, M.K.: Machine Learning and Deep Learning in Synthetic Biology: Key Architectures,
Applications, and Challenges. ACS Omega. 9, 9921-9945 (2024).
https://doi.org/10.1021/acsomega.3¢05913

Linseisen, J., Renner, B., Gedrich, K., Wirsam, J., Holzapfel, C., Lorkowski, S., Watzl, B., Daniel, H,,
Leitzmann, M.: Data in Personalized Nutrition: Bridging Biomedical, Psycho-behavioral, and Food
Environment Approaches for Population-wide Impact. Adv. Nutr. 16, 100377 (2025).
https://doi.org/10.1016/j.advnut.2025.100377

Fakhri, S., Abdian, S., Zarneshan, S.N., Moradi, S.Z., Farzaei, M.H., Abdollahi, M.: Nanoparticles in
Combating Neuronal Dysregulated Signaling Pathways: Recent Approaches to the Nanoformulations of
Phytochemicals and Synthetic Drugs Against Neurodegenerative Diseases. Int. J. Nanomedicine. 17, 299—
331 (2022). https://doi.org/10.2147/1IN.S347187

Sanna, V., Siddiqui, [.A., Sechi, M., Mukhtar, H.: Nanoformulation of natural products for prevention and
therapy of prostate cancer. Cancer Lett. 334, 142—-151 (2013).
https://doi.org/10.1016/j.canlet.2012.11.087

Schuler, M.S., Rose, S.: Targeted Maximum Likelihood Estimation for Causal Inference in Observational
Studies. Am. J. Epidemiol. 185, 65—73 (2017). https://doi.org/10.1098/aje/ kww165

Magrabi, F., Ammenwerth, E., McNair, J.B., De Keizer, N.I'., Hypponen, H., Nykinen, P., Rigby, M.,
Scott, P.J.,, Vehko, T., Wong, Z.5.-Y., Georgiou, A.: Artificial Intelligence in Clinical Decision Support:
Challenges for Evaluating Al and Practical Implications. Yearb. Med. Inform. 28, 128-134 (2019).
https://doi.org/10.1055/5-0039-1677903

Ahmad, M., Hasan, M., Tarannum, N., Hasan, M., Ahmed, S.: Recent advances in optical and
photoelectrochemical nanobiosensor technology for cancer biomarker detection. Biosens. Bioelectron. X.
14, 100375 (2023). https://doi.org/10.1016/).biosx.2028.100375

Bhatia, D., Paul, S., Acharjee, T., Ramachairy, S.S.: Biosensors and their widespread impact on human
health. Sens. Int. 5, 100257 (2024). https://doi.org/10.1016/].sintl.2023.100257

Garcia Garcia, B., Fernandez-Manteca, M.G., Zografopoulos, D.C., Gémez-Galdés, C., Ocampo-Sosa,
A.A,, Rodriguez-Cobo, L., Algorri, J.F., Cobo, A.: Plasmonic and Dielectric Metasurfaces for Enhanced
Spectroscopic Techniques. Biosensors. 15, 401 (2025). https://doi.org/10.8890/bios15070401

Ma, S., Zhang, M., Sun, W., Gao, Y., Jing, M., Gao, L., Wu, Z.: Artificial intelligence and medical-
engineering integration in diabetes management: Advances, opportunities, and challenges. Healthc.
Rehabil. 1, 100006 (2025). https://doi.org/10.1016/}.hcr.2024.100006

Salgueiro, M.J.,, Zubillaga, M.: Strategic Objectives of Nanotechnology-Driven Repurposing in
Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology). Pharmaceutics.
17, 1159 (2025). https://doi.org/10.8390/pharmaceutics 17091159

Zhang, Y., Tian, J.: Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies.
ACS Omega. 9, 37459-37504 (2024). https://doi.org/10.1021/acsomega.4c04573

13



www.idosr.org
42.

43.

44

Mwende, 2026
Atangwho, IJ., Ugwu, O.P.-C,, Egbung, G.E., Aja, P.M.: Lipid-based nano-carriers for the delivery of
anti-obesity natural compounds: advances in targeted delivery and precision therapeutics. J.
Nanobiotechnology. 28, 836 (2025). https://doi.org/10.1186/s12951-025-03412-z

Liarakos, A.L., Panagiotou, G., Chondronikola, M., Wilmot, E.G.: Continuous Glucose Monitoring in
People at High Risk of Diabetes and Dysglycaemia: Transforming Early Risk Detection and Personalised
Care. Life. 15, 1579 (2025). https://doi.org/10.8390/lite15101579

Baranwal, A., Bansal, V., Shukla, R.: Emerging Biomarkers and Nanobiosensing Strategies in Diabetes.
Biosensors. 15, 639 (2025). https://doi.org/10.8890/bios 15100639

14


https://doi.org/10.59298/IDOSR/JBCP/26/102.814

