

International Digital Organization for Scientific Research
 IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY 11(1):62-66, 2026.
<https://doi.org/10.59298/IDOSR/JBCP/26/102.62-66>

IDOSR JBCP/26/102.1700

Integrative Perspectives on Antioxidant-Mediated Neuromodulation and Hepatoprotection: Natural Product Strategies Against Metabolic and Environmental Insults

Mukamana Sandra Gisele

School of Applied Health Sciences Kampala International University Uganda

ABSTRACT

The liver and brain are interconnected through a complex network known as the liver-brain axis, which plays a pivotal role in maintaining systemic homeostasis. Disruptions in this communication, due to environmental toxins or metabolic disorders, can lead to a range of health issues affecting both organs. Antioxidants, particularly those derived from natural products, have garnered attention for their potential to modulate oxidative stress, inflammation, and metabolic dysfunctions associated with these conditions. This review explores the mechanisms by which natural antioxidants exert protective effects on both the liver and brain, highlighting their role in mitigating the impact of environmental and metabolic insults. Emphasis is placed on the activation of key molecular pathways, such as the Nrf2/ARE signaling pathway, which governs the expression of antioxidant enzymes and cellular defense mechanisms. Additionally, the review discusses the therapeutic potential of various natural compounds, including polyphenols, flavonoids, and carotenoids, in restoring balance to the liver-brain axis. The synergistic effects of these compounds, when combined with lifestyle interventions like diet and exercise, are also examined. Understanding the integrative actions of natural antioxidants offers promising avenues for developing holistic therapeutic strategies aimed at preserving liver and brain health in the face of environmental and metabolic challenges.

Keywords: Antioxidants, Neuromodulation, Hepatoprotection, Natural Products, Metabolic Disorders

INTRODUCTION

The liver-brain axis is a dynamic and intricate interface where hepatic metabolic, detoxification, and endocrine processes directly influence central nervous system (CNS) function, while neural and neuroendocrine signals reciprocally regulate liver physiology [1]. This bidirectional communication is essential for maintaining systemic homeostasis, integrating energy metabolism, inflammatory responses, and stress adaptation. Dysregulation of this axis occurs in metabolic disorders such as diabetes mellitus and non-alcoholic fatty liver disease (NAFLD), as well as following chronic exposure to environmental toxicants, including heavy metals, pesticides, and industrial pollutants [2]. Such disruptions initiate a cascade of pathological events, manifesting as hepatic inflammation, oxidative stress, metabolic imbalance, and neuroinflammation, ultimately compromising both liver and brain health. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) and endogenous antioxidant defenses, is a key mechanistic driver of liver-brain axis dysfunction [3]. In the liver, oxidative stress impairs mitochondrial function, lipid metabolism, and xenobiotic detoxification, leading to the accumulation of harmful metabolites and inflammatory mediators. These perturbations can affect brain function either directly, via the circulation of toxic metabolites and cytokines, or indirectly, through altered metabolic signaling and autonomic nervous system pathways [4,5]. Conversely, oxidative and inflammatory stress within the CNS can feedback to the liver, exacerbating metabolic dysregulation and hepatocellular injury.

Natural antioxidants derived from plant-based or dietary sources, including polyphenols, flavonoids, carotenoids, and terpenoids, have shown substantial potential in mitigating oxidative damage and restoring homeostatic balance across the liver-brain axis [6]. By scavenging free radicals, enhancing endogenous antioxidant defenses, and modulating inflammatory and metabolic signaling, these compounds offer dual hepatoprotective and neuromodulatory effects [7]. This review focuses on the mechanisms by which natural antioxidants exert these

protective effects, emphasizing their therapeutic potential in mitigating metabolic and environmental insults that compromise liver and brain function.

2. Mechanisms of Liver-Brain Crosstalk

2.1. Inflammatory Mediators

The liver is highly responsive to metabolic stress and environmental toxicants, which activate intracellular inflammatory signaling cascades such as NF-κB and MAPK pathways [8]. This activation results in the systemic release of cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) [9]. These circulating mediators can cross the blood-brain barrier through active transport mechanisms or by compromising barrier integrity, leading to the activation of microglia and astrocytes [10]. In the CNS, glial cells amplify the inflammatory response by producing additional cytokines and chemokines, propagating neuroinflammation and oxidative stress. Chronic systemic inflammation originating from the liver is increasingly recognized as a contributor to cognitive decline, mood disorders, and neurodegenerative conditions [11].

2.2. Metabolic Signals

The liver regulates systemic energy homeostasis by controlling glucose production, lipid metabolism, and ketone body synthesis. Metabolic disturbances, as observed in NAFLD or diabetes, lead to altered concentrations of circulating glucose, free fatty acids, and ketone bodies, which can directly impact neuronal energy supply and synaptic function [12]. Elevated glucose levels promote the formation of advanced glycation end-products (AGEs) and ROS, impairing neuronal signaling and plasticity. Dysregulated lipid metabolism contributes to lipotoxicity and oxidative damage within the CNS, while altered ketone body availability can influence mitochondrial bioenergetics and neuroprotection [13]. These metabolic perturbations underscore the liver's pivotal role in maintaining CNS function and highlight the vulnerability of the brain to hepatic dysfunction.

2.3. Neural Pathways

In addition to humoral signals, the vagus nerve provides a direct neural connection between the liver and the brain. Hepatic vagal afferents sense metabolic status, inflammation, and hepatocellular stress, transmitting information to the brainstem, which modulates central processes including appetite regulation, stress response, and autonomic output [14]. Conversely, efferent signals from the CNS regulate hepatic glucose production, bile secretion, and immune responses, demonstrating the bidirectional nature of liver-brain communication. Disruption of these neural pathways, as occurs in diabetic neuropathy or chronic toxin exposure, further compromises homeostatic balance, amplifying the deleterious effects on both liver and CNS function [15].

3. Antioxidant-Mediated Protection in Liver and Brain

3.1. Natural Antioxidants and the Nrf2 Pathway

Natural antioxidants, including polyphenols, flavonoids, carotenoids, and terpenoids, exert significant protective effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway [16]. Nrf2 is a redox-sensitive transcription factor that binds to antioxidant response elements (AREs) in the promoter regions of cytoprotective genes, driving the expression of enzymes such as superoxide dismutase, catalase, heme oxygenase-1, and glutathione S-transferases [17]. In the liver, Nrf2 activation enhances detoxification of xenobiotics, stabilizes mitochondrial function, and limits lipid peroxidation. In the CNS, Nrf2 mitigates neuronal oxidative damage, reduces glial activation, and preserves synaptic integrity [18]. Activation of this pathway by natural compounds provides a molecular basis for coordinated hepatoprotection and neuromodulation, highlighting the liver-brain axis as a therapeutic target in metabolic and environmental insults [19].

3.2. Polyphenols and Flavonoids

Polyphenols such as resveratrol, curcumin, and quercetin offer multifaceted antioxidant and anti-inflammatory benefits [20]. Resveratrol, abundant in grapes and berries, enhances Nrf2 activation, reduces ROS generation, and improves mitochondrial efficiency in hepatocytes and neurons. Curcumin, the principal active compound in turmeric, modulates inflammatory signaling pathways including NF-κB and MAPKs, reduces hepatocellular apoptosis, and mitigates neuroinflammation, thereby providing dual organ protection [21]. Quercetin, present in apples, onions, and citrus fruits, stabilizes cellular redox homeostasis and protects against cognitive impairment induced by oxidative stress [22]. Collectively, these polyphenols influence both systemic metabolism and neural function, acting as neuromodulatory agents while simultaneously safeguarding liver integrity.

3.3. Carotenoids

Carotenoids, including β-carotene and lutein, confer antioxidant protection through free radical scavenging and modulation of membrane lipid peroxidation. β-Carotene, a vitamin A precursor, enhances hepatic antioxidant capacity, attenuates inflammatory cytokine release, and improves cognitive outcomes in models of oxidative stress [23]. Lutein, abundant in green leafy vegetables, exerts neuroprotective effects by stabilizing neuronal membranes, reducing ROS-induced synaptic damage, and supporting visual and cognitive function [24]. The complementary antioxidant and anti-inflammatory actions of carotenoids make them effective candidates for integrated protection of both liver and brain tissues.

4. Integrative Strategies for Liver and Brain Health

4.1. Synergistic Effects of Diet and Exercise

Integrating antioxidant-rich diets with regular physical activity amplifies the benefits of Nrf2 activation and redox homeostasis [25]. Exercise induces mild oxidative stress that serves as a hormetic stimulus, enhancing endogenous antioxidant defenses. When combined with dietary antioxidants, such as polyphenols and carotenoids, this hormetic response strengthens cellular resilience, improves hepatic lipid and glucose metabolism, and supports neurogenesis and synaptic plasticity. Nutritional interventions emphasizing fruits, vegetables, nuts, and plant-derived bioactive compounds complement exercise-induced signaling pathways, collectively improving liver and brain health [26].

4.2. Lifestyle Modifications

Lifestyle factors, including stress management, sleep quality, and cognitive stimulation, further support liver-brain axis integrity. Mindfulness-based interventions reduce systemic inflammation, normalize cortisol levels, and improve insulin sensitivity, which benefits both hepatic and neural function [27]. Cognitive training and adequate sleep enhance synaptic resilience, mitochondrial efficiency, and detoxification pathways, reinforcing the effects of antioxidants and exercise [28]. By combining dietary, physical, and behavioral strategies, it is possible to create a comprehensive, integrative approach that mitigates oxidative stress, restores metabolic homeostasis, and protects both liver and brain from environmental and metabolic insults [29].

5. Future Directions

Future research should prioritize the identification and validation of reliable biomarkers that accurately reflect the functional status of the liver-brain axis. These could include circulating cytokines, hepatokines, metabolomic profiles, and neuroimaging indicators that detect early perturbations in hepatic and neural function. Early recognition of axis dysfunction would allow timely interventions, potentially preventing the progression of liver disease, cognitive impairment, and neurodegeneration. Additionally, mechanistic studies are needed to elucidate the molecular crosstalk linking oxidative stress, inflammation, metabolic dysregulation, and neural signaling. Particular emphasis should be placed on understanding how environmental toxicants exacerbate these processes and how natural antioxidants and neuromodulatory agents can mitigate their effects.

Development of integrated therapeutic strategies represents a promising frontier. Pharmacological interventions targeting both hepatic detoxification and CNS protection, combined with natural product-based antioxidants, could provide dual benefits. Furthermore, lifestyle interventions, including diet, exercise, stress management, and cognitive training, should be systematically evaluated for their synergistic effects on liver-brain communication. Personalized medicine approaches that account for an individual's metabolic profile, genetic susceptibility, and environmental exposures may optimize the efficacy of these interventions. Longitudinal studies assessing combined hepatoprotective and neuroprotective strategies will be critical for translating preclinical findings into effective clinical therapies.

CONCLUSION

The liver-brain axis is a central physiological network linking hepatic metabolism, detoxification, and inflammatory processes with CNS function. Disruptions in this communication, whether due to environmental toxicants, metabolic disorders such as diabetes and NAFLD, or a combination of risk factors, can precipitate a spectrum of hepatic and neurological dysfunctions. Oxidative stress and chronic inflammation emerge as common mechanistic threads that compromise both organs. Understanding the intricate interplay between liver and brain functions offers a framework for developing integrated therapeutic strategies. Interventions that combine pharmacological agents, natural antioxidants, and lifestyle modifications hold significant promise for restoring homeostasis and mitigating the adverse effects of environmental and metabolic insults. Advancing research in this area will not only enhance clinical management of metabolic and toxin-induced disorders but also provide opportunities to prevent long-term neurocognitive and hepatic complications, ultimately improving systemic health and quality of life.

REFERENCES

1. Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. *Neuropharmacology*. 2022 Mar 1;205:108915. doi: 10.1016/j.neuropharm.2021.108915. Epub 2021 Dec 15. PMID: 34919906.
2. Alum, E.U., Uti, D.E. Modern perspectives on chelation therapy: optimizing biochemical approaches to heavy metal detoxification. *Toxicol. Environ. Health Sci.* (2025). <https://doi.org/10.1007/s13530-025-00281-9>
3. Uti, D.E. & Offor, C.E. Redox Signaling Disruption and Antioxidants in Toxicology: From Precision Therapy to Potential Hazards. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01846-8>
4. Zou, J., Li, J., Wang, X. *et al.* Neuroimmune modulation in liver pathophysiology. *J Neuroinflammation* **21**, 188 (2024). <https://doi.org/10.1186/s12974-024-03181-w>
5. Aja O. A., Egba S. I., Uhuru Emmanuel Nnaemeka, Alaebo Prince Ogocukwu, Mba Obinna Joseph, and Oriaku Chinwe Edith. Hepatoprotective potentials of aqueous chloroform and methanol leaf extracts

Whitfieldia lateritia 2, 4-dinitrophenylhydrazine induced anaemia in rats. *Bio-research and Biotechnology*, 2022; 20(2) 1434-1445

6. Krishnamoorthy R, Gatasheh MK, Famurewa AC, Subbarayan S, Vijayalakshmi P, Uti DE. Neuroprotective Potential of Jimson Weed in Methotrexate-Induced Neurotoxicity: Insights into Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms via Modulation of Caspase-3, Interleukin-6, and Tumor Necrosis Factor-Alpha: In Silico. *Endocr Metab Immune Disord Drug Targets*. 2025 Aug 15. doi: 10.2174/0118715303350736241220090850.
7. Ogbodo John Onyebuchi, Chinazom Precious Agbo, Ugoci Olivia Njoku, Martins Obinna Ogugofor, Egba Simeon Ikechukwu, Stella Amarachi Ihim, Adaeze Chidiebere Echezona Kenneth Chibuike Brendan, Aman Babanrao Upaganlawar, and Chandrashekhar Devidas Upasani. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions, *Current Aging Science*, 2021; 21:1-25.
8. Cyr KJ, Avaldi OM, Wikswo JP. Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component? *Experimental Biology and Medicine*. 2017;242(17):1714-1731. doi:[10.1177/1535370217732766](https://doi.org/10.1177/1535370217732766)
9. Ott LW, Resing KA, Sizemore AW, Heyen JW, Cocklin RR, Pedrick NM, Woods HC, Chen JY, Goebl MG, Witzmann FA, Harrington MA. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information. *J Proteome Res*. 2007 Jun;6(6):2176-85. doi: 10.1021/pr0606651. Epub 2007 May 16. PMID: 17503796; PMCID: PMC2877378.
10. Ishijima T, Nakajima K. Inflammatory cytokines TNF α , IL-1 β , and IL-6 are induced in endotoxin-stimulated microglia through different signaling cascades. *Science Progress*. 2021;104(4). doi:[10.1177/00368504211054985](https://doi.org/10.1177/00368504211054985)
11. Kaye, A.D., Perilloux, D.M., Hawkins, A.M. *et al.* Tumor Necrosis Factor and Interleukin Modulators for Pathologic Pain States: A Narrative Review. *Pain Ther* 13, 481–493 (2024). <https://doi.org/10.1007/s40122-024-00603-8>
12. Brebner, K., Hayley, S., Zacharko, R. *et al.* Synergistic Effects of Interleukin-1 β , Interleukin-6, and Tumor Necrosis Factor- α : Central Monoamine, Corticosterone, and Behavioral Variations. *Neuropsychopharmacol* 22, 566–580 (2000). [https://doi.org/10.1016/S0893-133X\(99\)00166-9](https://doi.org/10.1016/S0893-133X(99)00166-9)
13. Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. *International Journal of Molecular Sciences*. 2019; 20(23):6008. <https://doi.org/10.3390/ijms20236008>
14. Browning KN, Verheijden S, Boeckxstaens GE. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. *Gastroenterology*. 2017 Mar;152(4):730-744. doi: 10.1053/j.gastro.2016.10.046. Epub 2016 Dec 15. PMID: 27988382; PMCID: PMC5337130.
15. Yahagi N. Hepatic Control of Energy Metabolism via the Autonomic Nervous System. *J Atheroscler Thromb*. 2017 Jan 1;24(1):14-18. doi: 10.5551/jat.RV16002. Epub 2016 Sep 2. PMID: 27592630; PMCID: PMC5225128.
16. Uti DE, Egba SI, Ugwu OP-C, Aja PM. The Role of Phytochemicals in Age-Related Cognitive Decline: A Natural Solution for Brain Health. *Natural Product Communications*. 2025;20(6). doi:[10.1177/1934578X251350761](https://doi.org/10.1177/1934578X251350761)
17. Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. *International Journal of Molecular Sciences*. 2024; 25(14):7621. <https://doi.org/10.3390/ijms25147621>
18. Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. *Antioxidants (Basel)*. 2023 Oct 29;12(11):1928. doi: 10.3390/antiox12111928. PMID: 38001781; PMCID: PMC10669501.
19. Alum, E.U. Unlocking the Secrets of Nature: Phytochemicals as Key Players in Longevity and Healthy Aging. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01872-6>
20. Saeed, E., Javed, F., Rana, Z., Perveen, R., Mallhi, I.Y., Amjad, I., Maqsood, Q., Chaudhary, N.A., Tahir, S.B., Fatima, A., Rasheed, N.F. Bioactive Compounds, Their Mechanisms of Action, and Cardioprotective Effects of Pomegranate (*Punica granatum*): A Comprehensive Review. *eFood*, 2025; 6:e70075<https://doi.org/10.1002/efd2.70075>
21. Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. *Biomolecules*. 2024 Feb 14;14(2):221. doi: 10.3390/biom14020221. PMID: 38397458; PMCID: PMC10887194.
22. Inchingolo AD, Inchingolo AM, Malcangi G, Avantario P, Azzollini D, Buongiorno S, Viapiano F, Campanelli M, Cioica AM, De Leonardi N, de Ruvo E, Ferrara I, Garofoli G, Montenegro V, Netti A, Palmieri G, Mancini A, Patano A, Piras F, Marinelli G, Di Pede C, Laudadio C, Rapone B, Hazballa D, Corriero A, Fatone MC, Palermo A, Lorusso F, Scarano A, Bordea IR, Di Venere D, Inchingolo F, Dipalma

G. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism-A Systematic Review. *Nutrients.* 2022 Aug 26;14(17):3519. doi: 10.3390/nu14173519. PMID: 36079777; PMCID: PMC9459740.

- 23. Ciupei D, Colișar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. *Foods.* 2024; 13(24):4131. <https://doi.org/10.3390/foods13244131>
- 24. Quesada-Vázquez, S., Eseberri, I., Les, F. *et al.* Polyphenols and metabolism: from present knowledge to future challenges. *J Physiol Biochem* **80**, 603–625 (2024). <https://doi.org/10.1007/s13105-024-01046-7>
- 25. Warias P, Plewa P, Poniewierska-Baran A. Resveratrol, Piceatannol, Curcumin, and Quercetin as Therapeutic Targets in Gastric Cancer—Mechanisms and Clinical Implications for Natural Products. *Molecules.* 2025; 30(1):3. <https://doi.org/10.3390/molecules30010003>
- 26. Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. *Int J Mol Sci.* 2025 Jan 27;26(3):1098. doi: 10.3390/ijms26031098. PMID: 39940866; PMCID: PMC11817741.
- 27. Ochulor Okechukwu C., Njoku Obioma U., Uroko Robert I and Egba Simeon I. Nutritional composition of *Jatropha tanjorensis* leaves and effects of its aqueous extract on carbon tetrachloride induced oxidative stress in male Wistar albino rats. *Biomedical Research* 2018; 29(19): 3569-3576
- 28. Meng Q, Su C-H. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. *Antioxidants.* 2024; 13(5):573. <https://doi.org/10.3390/antiox13050573>
- 29. Meng Q, Su C-H. Antioxidant Defense and Redox Signaling in Elite Soccer Players: Insights into Muscle Function, Recovery, and Training Adaptations. *Antioxidants.* 2025; 14(7):815. <https://doi.org/10.3390/antiox14070815>

CITE AS: Mukamana Sandra Gisele (2026). Integrative Perspectives on Antioxidant-Mediated Neuromodulation and Hepatoprotection: Natural Product Strategies Against Metabolic and Environmental Insults. **IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY** **11(1):62-66.** <https://doi.org/10.59298/IDOSR/JBCP/26/102.6266>