

International Digital Organization for Scientific Research
 IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY 11(1):57-61, 2026.
<https://doi.org/10.59298/IDOSR/JBCP/26/102.5761>

IDOSR JBCP/26/102.1700

From Liver to Brain: Cross-Talk Between Hepatoprotection and Neuromodulation in Environmental Toxicity and Metabolic Disorders

Mukamana Sandra Gisele

School of Applied Health Sciences Kampala International University Uganda

ABSTRACT

The liver-brain axis represents a complex and dynamic interface where hepatic metabolic processes influence central nervous system (CNS) function, and conversely, neural and neuroendocrine signals modulate liver physiology. This bidirectional communication is particularly relevant in the context of environmental toxicant exposure and metabolic disorders, including diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD), which collectively increase the burden of oxidative stress, inflammation, and metabolic dysregulation. Environmental toxicants such as heavy metals, pesticides, and persistent organic pollutants can impair hepatic detoxification and antioxidant defenses, leading to the release of pro-inflammatory cytokines, reactive metabolites, and neurotoxic intermediates into circulation, which adversely affect brain function. Simultaneously, neuroinflammation, altered autonomic signaling, and metabolic disturbances in the CNS can exacerbate liver injury, creating a feed-forward loop of organ cross-talk. Recent evidence highlights the potential of hepatoprotective and neuromodulatory interventions, including natural bioactive compounds, to restore redox balance, reduce inflammation, enhance detoxification pathways, and support neuronal resilience. Understanding the molecular mechanisms underlying liver-brain communication is critical for developing integrated therapeutic strategies that concurrently protect hepatic and neural health, mitigate environmental toxicant-induced damage, and reduce the risk of cognitive decline and neurodegenerative outcomes in populations with metabolic disorders.

Keywords: Liver-brain axis, environmental toxins, neuroinflammation, metabolic disorders, hepatoprotection

INTRODUCTION

The liver and brain are interconnected through a sophisticated communication network referred to as the liver-brain axis [1]. This axis is essential for maintaining systemic homeostasis, integrating metabolic signals, immune responses, and neural inputs to coordinate physiological processes. The liver, as the principal organ responsible for detoxification, xenobiotic metabolism, and energy balance, can influence brain function through the release of metabolites, hormones, and inflammatory mediators [2]. Conversely, the central nervous system (CNS) modulates hepatic physiology via autonomic innervation, neuroendocrine signaling, and stress-responsive pathways [3]. In conditions such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), and exposure to environmental toxins, this bidirectional communication becomes disrupted [4]. Dysregulation of the liver-brain axis can trigger a cascade of pathological events, including oxidative stress, systemic and neuroinflammation, metabolic imbalance, and neural dysfunction, ultimately compromising both hepatic and cognitive health [5]. Understanding the mechanistic underpinnings of this cross-talk is crucial for developing therapeutic strategies that simultaneously target hepatic and neurological outcomes in populations at risk.

1. Mechanisms of Liver-Brain Crosstalk

1.1. Inflammatory Mediators

Exposure of the liver to environmental toxicants induces metabolic stress, which activates multiple inflammatory pathways, including NF-κB and MAPK signaling [6]. This leads to the production and systemic release of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) [7]. These circulating mediators can traverse the blood-brain barrier, either directly or through transport

mechanisms, activating microglia and astrocytes within the CNS. The activated glial cells then amplify neuroinflammation by releasing additional cytokines and chemokines, creating a feed-forward loop that sustains CNS injury [8]. Chronic activation of this pathway is implicated in cognitive impairment, mood disorders, and accelerated neurodegenerative processes. Environmental toxicants such as heavy metals, pesticides, and industrial pollutants exacerbate these inflammatory cascades, highlighting the liver's central role as an amplifier of systemic and neurological injury [9].

1.2. Metabolic Signals

The liver exerts a significant influence over systemic and cerebral energy homeostasis by regulating glucose, lipid, and ketone body metabolism. In pathological states such as NAFLD or diabetes, hepatic insulin resistance and dyslipidemia lead to altered nutrient and hormone levels in circulation [10]. These metabolic perturbations affect neuronal energy supply, neurotransmitter synthesis, and synaptic plasticity, thereby impairing cognitive processes and modulating mood. For instance, elevated circulating free fatty acids and hyperglycemia can induce oxidative stress in neurons, while changes in ketone body availability may affect mitochondrial bioenergetics and neuroprotective signaling [11]. Thus, hepatic metabolic dysregulation directly contributes to CNS vulnerability in metabolic disorders and environmental toxin exposure.

1.3. Neural Pathways

Direct neural connections between the liver and brain, primarily via the vagus nerve, provide rapid communication that complements humoral signaling [12]. Hepatic vagal afferents transmit information regarding nutrient status, metabolic stress, and inflammatory signals to brainstem nuclei, influencing appetite regulation, stress responses, and autonomic tone [13]. Conversely, efferent signals from the CNS modulate hepatic processes including gluconeogenesis, bile secretion, and immune cell activity [14]. This bidirectional neural communication ensures adaptive responses under physiological conditions but may propagate pathological signals when liver function is compromised, particularly in the setting of chronic toxin exposure or metabolic disorders.

2. Impact of Environmental Toxins on Liver and Brain Function

2.1. Hepatic Effects

Environmental toxins, including heavy metals such as arsenic and cadmium, pesticides, and industrial chemicals, can accumulate in hepatic tissue, generating oxidative stress and triggering inflammatory cascades [15]. Hepatocyte injury, mitochondrial dysfunction, and endoplasmic reticulum stress result from these exposures, which over time may lead to liver fibrosis, cirrhosis, or hepatocellular carcinoma [16]. Impaired hepatic function disrupts detoxification processes, allowing toxic metabolites to circulate and exert systemic effects [17].

2.2. Neurological Consequences

The spillover of hepatotoxic metabolites and cytokines into the circulation can significantly impact brain function [18]. Elevated ammonia levels, a byproduct of impaired hepatic urea cycle activity, may cause hepatic encephalopathy, manifested as cognitive deficits, attention impairment, and altered consciousness [19]. Systemic inflammation and oxidative stress originating from liver injury can further exacerbate neurodegenerative processes, increasing susceptibility to conditions such as Alzheimer's and Parkinson's diseases [20]. Chronic exposure to environmental toxins therefore, contributes to a compounded risk of both hepatic and neural dysfunction through interconnected molecular and physiological pathways.

3. Metabolic Disorders and Their Effect on Liver-Brain Communication

3.1. Diabetes

Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia, insulin resistance, and dysregulated lipid metabolism [21]. These systemic disturbances profoundly impact liver function, leading to increased hepatic glucose production, accumulation of triglycerides, and oxidative stress [22]. Hyperglycemia and insulin resistance trigger inflammatory signaling in hepatocytes, resulting in the release of pro-inflammatory cytokines such as TNF- α , IL-1 β , and IL-6 into the circulation [23]. These mediators can traverse the blood-brain barrier and contribute to neuroinflammation, microglial activation, and oxidative damage within the CNS. Additionally, altered metabolic signals, including elevated circulating glucose, free fatty acids, and ketone bodies, can impair neuronal energy homeostasis, synaptic plasticity, and neurotransmitter synthesis, which may manifest as cognitive deficits, mood disorders, and increased susceptibility to neurodegenerative diseases [24]. Chronic diabetic conditions may also disrupt autonomic regulation of the liver, further impairing hepatic metabolism and reinforcing a maladaptive feedback loop between the liver and brain [25]. Collectively, diabetes represents a model in which metabolic dysregulation, inflammation, and oxidative stress converge to compromise liver-brain communication.

3.2. Non-Alcoholic Fatty Liver Disease (NAFLD)

NAFLD is characterized by the pathological accumulation of lipids in hepatocytes, occurring independently of significant alcohol intake. It is closely associated with obesity, metabolic syndrome, and insulin resistance [25]. The steatotic liver exhibits impaired mitochondrial function, oxidative stress, and heightened inflammatory activity [26]. Hepatic lipid accumulation and inflammation promote the systemic release of cytokines and hepatokines, such

as fibroblast growth factor 21 (FGF21), which can influence CNS metabolism, neuroinflammation, and cognitive function. NAFLD is also linked to altered bile acid signaling, which modulates both liver metabolism and gut-brain communication, further affecting neurological outcomes [27]. Evidence suggests that NAFLD-related liver dysfunction may exacerbate brain insulin resistance, contribute to neurovascular impairment, and increase the risk of cognitive decline and mood disorders [28]. The cumulative effect of these disturbances highlights the bidirectional vulnerability of the liver-brain axis in metabolic disease states.

4. Therapeutic Strategies Targeting the Liver-Brain Axis

4.1. Pharmacological Interventions

Pharmacological approaches aimed at restoring liver-brain homeostasis focus on reducing inflammation, oxidative stress, and metabolic imbalance. Anti-inflammatory agents, including selective cytokine inhibitors and broad-spectrum anti-inflammatory drugs, can mitigate systemic and neuroinflammation, reducing glial activation and neuronal injury [29]. Medications that enhance insulin sensitivity, such as metformin and thiazolidinediones, improve hepatic glucose and lipid metabolism, indirectly supporting brain energy homeostasis [30]. Emerging therapies targeting mitochondrial dysfunction, oxidative stress pathways, and bile acid signaling also hold promise for simultaneously protecting hepatic and neural tissues [31]. Such interventions have the potential to alleviate both metabolic and neurocognitive complications associated with environmental toxin exposure and chronic metabolic disorders.

4.2. Lifestyle Modifications

Lifestyle interventions provide complementary or preventive benefits by improving both liver and brain health. Diets rich in antioxidants, polyphenols, and anti-inflammatory nutrients can reduce oxidative stress, restore redox balance, and support detoxification pathways in the liver, while simultaneously protecting neuronal integrity [32]. Regular physical activity enhances insulin sensitivity, promotes hepatic lipid metabolism, and stimulates neurogenesis and synaptic plasticity in the CNS [33]. Stress management techniques, including mindfulness and vagus nerve stimulation, may restore autonomic balance, modulate inflammatory signaling, and enhance liver-brain communication [34]. Together, these lifestyle modifications create an integrated therapeutic approach that strengthens the liver-brain axis, mitigates the harmful effects of metabolic disorders, and reduces susceptibility to environmental neurotoxins.

5. Future Directions

Future research on the liver-brain axis should prioritize the identification and validation of specific biomarkers that accurately reflect the functional status of this bidirectional communication. These biomarkers could include circulating cytokines, hepatokines, metabolite profiles, and neuroimaging signatures that capture early perturbations in hepatic and CNS function. Early detection of dysregulation would enable timely interventions, potentially preventing the progression of cognitive decline or liver disease. Additionally, mechanistic studies are needed to elucidate the molecular pathways linking hepatic metabolic disturbances, oxidative stress, and neuroinflammation, with particular focus on the role of mitochondrial dysfunction, redox imbalance, and autophagy in liver-brain cross-talk. Investigating the interplay between environmental toxicants, metabolic disorders, and neural signaling will provide insights into vulnerability factors and therapeutic targets. Importantly, the development of integrated therapeutic strategies that simultaneously support hepatic detoxification, reduce systemic and neuroinflammation, and promote neuroprotection represents a promising frontier. Such approaches could include pharmacological agents, natural bioactive compounds, or lifestyle interventions that enhance both liver and brain resilience. Moreover, exploring personalized medicine strategies that consider an individual's metabolic, environmental, and genetic profile will improve the precision and efficacy of interventions targeting the liver-brain axis.

CONCLUSION

The liver-brain axis is a central physiological network connecting hepatic metabolic and detoxification processes with brain function. Disruption of this axis, whether due to environmental toxin exposure, metabolic disorders such as diabetes and NAFLD, or combined risk factors, can precipitate a spectrum of hepatic and neurological dysfunctions, including oxidative stress, inflammation, cognitive impairment, and mood disturbances. Understanding the mechanisms of liver-brain communication provides a framework for the development of integrated therapeutic strategies that target both organs concurrently. Interventions that combine pharmacological, nutritional, and lifestyle approaches, potentially supplemented with neuromodulatory and hepatoprotective compounds, hold significant promise for restoring axis homeostasis. Advancing research in this field will not only improve clinical management of metabolic and environmental toxin-induced diseases but also offer opportunities to prevent long-term neurocognitive and hepatic complications, ultimately enhancing systemic health and quality of life.

REFERENCES

1. Yan M, Man S, Sun B, Ma L, Guo L, Huang L, et al. Gut liver brain axis in diseases: the implications for therapeutic interventions. *Signal Transduction and Targeted Therapy*. 2023;8(1). doi:10.1038/s41392-023-01673-4
2. Rhyu J, Yu R. Newly discovered endocrine functions of the liver. *World Journal of Hepatology*. 2021;13(11):1611–28. doi:10.4254/wjh.v13.i11.1611
3. Miller BM, Oderberg IM, Goessling W. Hepatic nervous system in development, regeneration, and disease. *Hepatology*. 2021;74(6):3513–22. doi:10.1002/hep.32055
4. Ejemot-Nwadiaro, R.I., Betieng, P. A., Basajja, M. Uti, D. E. (2025). Obesity and Climate Change: A Two-way Street with Global Health Implications. *Obesity Medicine*, 2025; 100623. <https://doi.org/10.1016/j.obmed.2025.100623>
5. Egba, S.I., Ademola C F and Omoruyi L E (2021) Bucholzia coriacea seed extract attenuates mercury induced cerebral and cerebellar oxidative neurotoxicity via NO signalling and suppression of oxidative stress, adenosine deaminase and acetylcholinesterase activities in rats. *Avicenna J Phytomed*. 2022 Jan-Feb;12(1):42–53. doi: 10.22038/AJP.2021.18262. PMID: 35145894; PMCID: PMC8801217.
6. Fu H, Ge Y, Liu X, Deng S, Li J, Tan P, et al. Exposure to the environmental pollutant chlorpyrifos induces hepatic toxicity through activation of the JAK/STAT and MAPK pathways. *The Science of the Total Environment*. 2024;928:171711. doi:10.1016/j.scitotenv.2024.171711
7. Uti, D.E. & Offor, C.E. Redox Signaling Disruption and Antioxidants in Toxicology: From Precision Therapy to Potential Hazards. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01846-8>
8. Fakorede S, Lateef OM, Garuba WA, Akosile PO, Okon DA, Aborode AT. Dual impact of neuroinflammation on cognitive and motor impairments in Alzheimer's disease. *Journal of Alzheimer S Disease Reports*. 2025;9. doi:10.1177/25424823251341870
9. Alum, E.U., Uti, D.E. Modern perspectives on chelation therapy: optimizing biochemical approaches to heavy metal detoxification. *Toxicol. Environ. Health Sci.* (2025). <https://doi.org/10.1007/s13530-025-00281-9>
10. Orji, O.U., Awoke, N.J., Obasi, D.O., Aja, P.M., Ezeani, N.N., Umoru, G.U., Ogbu, P.N., Udoudoh, M.P., Ogbu, C.O., Oodo, S.I., Ibiam, U.A. The Therapeutic Role of Gastrodin in Combating Insulin Resistance, Inflammation, and Oxidative Stress Induced by Bisphenol-A. *Natural Product Communications*. 2024;19(12). doi:10.1177/1934578X241310096
11. Uti DE, Atangwho IJ, Alum EU, Egba SI, Ugwu OPC, Ikechukwu GC. Natural Antidiabetic Agents: Current Evidence and Development Pathways from Medicinal Plants to Clinical use. *Natural Product Communications*. 2025;20(3). doi:10.1177/1934578X251323393
12. Dantzer R, Konsman JP, Bluthé RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? *Autonomic Neuroscience*. 2000;85(1–3):60–5. doi:10.1016/S1566-0702(00)00220-4
13. Longo S, Rizza S, Federici M. Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. *Acta Diabetologica*. 2023;60(8):1007–17. doi:10.1007/s00592-023-02088-x
14. Jensen KJ, Alpini G, Glaser S. Hepatic nervous system and neurobiology of the liver. *Comprehensive Physiology*. 2013;655–65. doi:10.1002/cphy.c120018
15. Ogbodo, John Onyebuchi, Egba, Simeon Ikechukwu., Ogbodo, Chizaramekpere Grace., Onwurah Ikechukwu, Emmanuel and Njoku, Obioma Uzoma. Effects of Exposure to Volatile Organic Compounds (VOCS) Content From Paint on Automobile Paint Workers in Nsukka, South Eastern Nigeria. *Helijon* 2024; 10(17) e37015
16. Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. *Therapeutic Advances in Gastroenterology*. 2021;14. doi:10.1177/17562848211031394
17. Umoru, G. U., Uti, D. E., Aja, P. M., Ugwu, O. P., Orji, O. U., Nwali, B. U., Ezeani, N., Edwin, N., Orinya, F. O. Hepato-protective effect of Ethanol Leaf Extract of *Datura stramonium* in Alloxan-induced Diabetic Albino Rats. *Journal of Chemical Society of Nigeria*. 2022; 47 (3): 1165 – 1176. <https://doi.org/10.46602/jcsn.v47i5.819>
18. Palafox-Sánchez V, Ying Z, Royes LFF, Gomez-Pinilla F. The interaction between brain and liver regulates lipid metabolism in the TBI pathology. *Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease*. 2021;1867(4):166078. doi:10.1016/j.bbadi.2021.166078
19. Ali R, Nagalli S. Hyperammonemia. *StatPearls - NCBI Bookshelf*. 2023. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK557504/>
20. Ugwu OP-C, Aja PM, Alum EU, Uti DE, Egba SI. The Role of Phytochemicals in Age-Related Cognitive Decline: A Natural Solution for Brain Health. *Natural Product Communications*. 2025;20(6). doi:10.1177/1934578X251350761
21. Alum EU. Optimizing patient education for sustainable self-management in type 2 diabetes. *Discov Public Health* 22, 44 (2025). <https://doi.org/10.1186/s12982-025-00445-5>

22. Ikpozu EN, Offor CE, Igwenyi, I.O, Ibiam, U.A., Obaroh, I.O. et al. RNA-based diagnostic innovations: A new frontier in diabetes diagnosis and management. *Diabetes & Vascular Disease Research.* 2025;22(2). doi:10.1177/14791641251334726

23. Ugwu, O.P.C., Kungu, E., Inyangat, R., Obeagu, E. I., Okon, M. B., Subbarayan, S. and Sankarapandiany, V. Exploring Indigenous Medicinal Plants for Managing Diabetes Mellitus in Uganda: Ethnobotanical Insights, Pharmacotherapeutic Strategies, and National Development Alignment. *INOSR Experimental Sciences.* 2023; 12(2):214-224. <https://doi.org/10.59298/INOSRES/2023/2.17.1000>.

24. Cheon SY, Song J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. *International Journal of Molecular Sciences.* 2021;22(1):463. doi:10.3390/ijms22010463

25. Obasi, D.C., Abba, J.N., Aniokete, U.C., Okoroh, P.N., Akwari, A.A. (2025). Evolving Paradigms in Nutrition Therapy for Diabetes: From Carbohydrate Counting to Precision Diets. *Obesity Medicine,* 2025; 100622. <https://doi.org/10.1016/j.obmed.2025.100622>

26. Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative stress in liver Pathophysiology and Disease. *Antioxidants.* 2023;12(9):1653. doi:10.3390/antiox12091653

27. Fisher FM, Chui PC, Nasser IA, Popov Y, Cunniff JC, Lundasen T, et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and Choline-Deficient diets. *Gastroenterology.* 2014;147(5):1073-1083.e6. doi:10.1053/j.gastro.2014.07.044

28. Giuffrè M, Merli N, Pugliatti M, Moretti R. The Metabolic impact of nonalcoholic fatty liver disease on cognitive dysfunction: A Comprehensive clinical and pathophysiological review. *International Journal of Molecular Sciences.* 2024;25(6):3337. doi:10.3390/ijms25063337

29. Manful CF, Fordjour E, Ikumoinein E, Abbey, Lord, Thomas R. Therapeutic Strategies Targeting Oxidative Stress and inflammation: A Narrative review. *BioChem.* 2025;5(4):35. doi:10.3390/biochem5040035

30. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. *Diabetologia.* 2017;60(9):1577–85. doi:10.1007/s00125-017-4342-z

31. Wang L, Zhou X, Lu T. Role of mitochondria in physiological activities, diseases, and therapy. *Molecular Biomedicine.* 2025;6(1). doi:10.1186/s43556-025-00284-5

32. Mitaki, N.B., Fasogbon, I.V., Ojiakor, O.V., Makenna, W., Ikuomola, E. O., Dangana, R.S., et al. (2025). A systematic review of plant-based therapy for the management of diabetes mellitus in the East Africa community. *Phytomedicine Plus,* 5(1): 100717. <https://doi.org/10.1016/j.phyplu.2024.100717>

33. Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of physical activity on cellular metabolism across both neurodegenerative and general neurological conditions: a narrative review. *Cells.* 2024;13(23):1940. doi:10.3390/cells13231940

34. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the Brain–Gut axis in psychiatric and inflammatory disorders. *Frontiers in Psychiatry.* 2018;9. doi:10.3389/fpsyg.2018.00044

CITE AS: Mukamana Sandra Gisele. (2026). From Liver to Brain: Cross-Talk Between Hepatoprotection and Neuromodulation in Environmental Toxicity and Metabolic Disorders. IDOSR JOURNAL OF BIOLOGY, CHEMISTRY AND PHARMACY 11(1):57-61.
<https://doi.org/10.59298/IDOSR/JBCP/26/102.5761>