

Hepatotoxicity-Induced Immune Dysregulation: Emerging Mechanisms Linking Xenobiotic Metabolism to Chronic Inflammation

Maina Mwaura F.

School of Natural and Applied Sciences Kampala International University Uganda

ABSTRACT

The liver is the primary site for xenobiotic metabolism and detoxification, rendering it particularly vulnerable to injury from drugs, environmental toxicants, dietary chemicals, and industrial pollutants. Hepatotoxicity triggers complex interactions between metabolic pathways and immune signaling networks, leading to immune dysregulation that can progress from acute hepatic injury to chronic inflammation and long-term liver diseases. Recent evidence shows that metabolic activation of xenobiotics generates reactive metabolites, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress, all of which initiate inflammatory responses mediated by Kupffer cells, hepatocytes, dendritic cells, and infiltrating immune cells. These events involve pattern recognition receptors, inflammasome activation, cytokine secretion, and modulation of adaptive immune responses. Persistent dysregulation of the hepatic immune environment drives fibrosis, steatohepatitis, metabolic derangements, and hepatocarcinogenesis. This review examines emerging mechanisms linking xenobiotic metabolism to immune activation, with emphasis on redox signaling, damage-associated molecular patterns, dysregulated cytokine networks, microbiome-derived metabolites, and genetic susceptibility factors. Understanding these interconnected pathways is essential for the development of targeted therapies, predictive biomarkers, and strategies for mitigating xenobiotic-induced chronic liver disease.

Keywords: Hepatotoxicity, Xenobiotic metabolism, Immune dysregulation, Chronic inflammation, Inflammasome activation

INTRODUCTION

The liver performs essential metabolic and detoxification functions that protect the body from xenobiotics, including pharmaceuticals, alcohol, dietary additives, industrial chemicals, and environmental pollutants [1]. Through its extensive enzymatic machinery, the liver transforms lipophilic compounds into hydrophilic derivatives for excretion. However, this metabolic activity often results in the formation of reactive intermediates that damage hepatocytes and activate the immune system. Hepatotoxicity is therefore not merely a biochemical event but rather an orchestrated pathological process involving crosstalk between metabolic stress and immune responses [2]. Immune dysregulation is increasingly recognized as a critical factor linking early xenobiotic-induced cellular damage to chronic liver inflammation. When the liver's detoxification and repair systems become overwhelmed, persistent innate and adaptive immune activation drives fibrosis, steatohepatitis, autoimmune-like responses, and carcinogenesis [3]. This review synthesizes current understanding of how xenobiotic metabolism perturbs immune homeostasis and the emerging mechanisms connecting hepatotoxicity to chronic inflammation.

2. Xenobiotic Metabolism and Hepatotoxicity

2.1 Phase I and Phase II Metabolism

Xenobiotic metabolism in the liver is a highly coordinated process that determines whether an exogenous compound becomes detoxified or transformed into a harmful intermediate [4]. Phase I metabolism is mediated largely by the cytochrome P450 (CYP) enzyme superfamily, which introduces or reveals functional groups through oxidation, reduction, and hydrolysis reactions [5]. Although these transformations generally increase polarity, they also frequently generate unstable electrophilic intermediates. These reactive molecules may form covalent adducts with nucleophilic sites on proteins, lipids, and nucleic acids, leading to structural disruption, impaired enzymatic function, and activation of stress pathways. Phase II metabolism serves as a secondary line of defense by conjugating Phase I products with hydrophilic groups such as glutathione, glucuronic acid, or sulfate. These reactions significantly

improve solubility and facilitate excretion through bile or urine [6]. However, the efficiency of Phase II reactions depends on adequate enzyme capacity and substrate availability. When xenobiotic load is high or when conjugation enzymes are inhibited, detoxification pathways become overwhelmed. This results in accumulation of toxic metabolites that continue to react with intracellular components. Furthermore, depletion of glutathione, a major antioxidant and conjugating substrate, exacerbates oxidative stress and weakens cellular resilience [7]. Thus, the balance between Phase I activation and Phase II detoxification plays a central role in determining whether a xenobiotic induces hepatotoxicity or is safely cleared[8].

2.2 Reactive Metabolite Formation

Reactive metabolites represent a critical mechanism linking xenobiotic exposure to liver injury. Compounds such as acetaminophen, isoniazid, valproate, methotrexate, and certain phytochemicals undergo metabolic activation into electrophilic species that readily form covalent bonds with cellular proteins [9]. These metabolite-protein adducts interfere with metabolic enzymes, transport proteins, and structural elements, impairing fundamental hepatocyte functions. In addition to direct cytotoxicity, adduct formation induces oxidative stress, disrupts cellular redox balance, and promotes mitochondrial damage. Glutathione plays a central role in neutralizing reactive metabolites, but once depleted, hepatocytes become vulnerable to overwhelming oxidative injury [10]. Persistent generation of reactive intermediates also leads to modification of nuclear and mitochondrial DNA, lipid peroxidation, and disruption of calcium homeostasis. These events ultimately converge to trigger cell death pathways, including apoptosis and necrosis. Necrotic cell death, in particular, spills intracellular contents into the extracellular space, amplifying immune activation [11].

2.3 Mitochondrial Injury in Hepatotoxicity

Mitochondria are a primary target of xenobiotic-induced toxicity. Many compounds directly interfere with components of the electron transport chain, leading to impaired oxidative phosphorylation, decreased ATP generation, and leakage of electrons that combine with oxygen to form superoxide radicals [12]. This oxidative damage disrupts mitochondrial membrane integrity and can initiate the mitochondrial permeability transition, a catastrophic event characterized by loss of membrane potential and release of pro-apoptotic factors. Mitochondrial dysfunction has consequences that extend beyond energy depletion[13]. Damaged mitochondria release mitochondrial DNA, cardiolipin, and other mitochondrial-associated danger signals into the cytosol and extracellular environment. These molecules are potent activators of innate immune receptors and contribute to sterile inflammation. In chronic settings, repeated mitochondrial injury leads to persistent oxidative stress, fibrogenic signaling, and immune dysregulation [14]. Mitochondrial impairment is now recognized as a defining driver of many forms of drug-induced liver injury and serves as a mechanistic link between xenobiotic metabolism, cell death, and chronic hepatic inflammation.

3. Hepatocyte Stress Responses as Immune Triggers

3.1 Oxidative Stress and Redox Imbalance

Oxidative stress is one of the earliest and most significant consequences of xenobiotic metabolism. Excessive production of reactive oxygen species overwhelms cellular antioxidant systems such as glutathione, superoxide dismutase, and catalase [15]. This imbalance promotes oxidation of lipids, proteins, and nucleic acids, generating a variety of oxidized molecules that are recognized by the immune system as indicators of cellular distress. Activation of redox-sensitive transcription factors including NF- κ B and AP-1 stimulates the expression of inflammatory cytokines, chemokines, and adhesion molecules [16]. These mediators recruit immune cells such as Kupffer cells, neutrophils, and monocytes, amplifying hepatic inflammation. In addition, oxidatively modified lipids form bioactive aldehydes that can further damage proteins and DNA, perpetuating a cycle of injury and immune activation.

3.2 Endoplasmic Reticulum Stress

The endoplasmic reticulum plays an essential role in protein synthesis and folding, and it is highly sensitive to changes in intracellular homeostasis. Xenobiotics that interfere with protein folding induce endoplasmic reticulum stress and activate the unfolded protein response[17]. This adaptive pathway attempts to restore homeostasis by halting protein translation, enhancing chaperone expression, and promoting degradation of misfolded proteins. However, when endoplasmic reticulum stress is severe or persistent, these mechanisms become maladaptive and initiate inflammatory and apoptotic signaling cascades. Key pathways activated include the JNK and NF- κ B pathways, which increase production of inflammatory cytokines[18]. Endoplasmic reticulum stress also sensitizes hepatocytes to mitochondrial dysfunction and oxidative stress, synergistically worsening injury. Chronic activation of these pathways contributes to sustained inflammation and promotes progression toward fibrosis.

3.3 Release of DAMPs

Severely stressed or damaged hepatocytes release a variety of intracellular molecules that act as damage-associated molecular patterns[19]. These include ATP, high-mobility group box protein 1, heat shock proteins, uric acid crystals, and mitochondrial DNA. Once released, these molecules bind and activate pattern recognition receptors on Kupffer cells, dendritic cells, neutrophils, and hepatic stellate cells[20]. Activation of these immune cells results in secretion of pro-inflammatory cytokines, reactive oxygen species, and profibrogenic factors. The release of DAMPs

is a central mechanism by which sterile inflammation is initiated in the absence of pathogens. In chronic exposure scenarios, repeated DAMP release creates a persistent inflammatory microenvironment that promotes immune dysregulation and fibrotic remodeling, ultimately contributing to the development of chronic liver disease.

4. Innate Immune Activation in Hepatotoxicity

4.1 Kupffer Cell Activation

Kupffer cells are sentinel liver macrophages responsible for detecting toxicants and clearing cellular debris. Reactive metabolites and DAMPs activate Kupffer cells through receptors such as TLR4, TLR2, and NOD-like receptors[21]. Activated Kupffer cells release TNF-alpha, IL-1beta, IL-6, and chemokines that recruit neutrophils and monocytes. While essential for initial defense and clearance, sustained Kupffer cell activation results in chronic inflammation and fibrosis[22].

4.2 Inflammasome Signaling

Xenobiotics commonly activate the NLRP3 inflammasome through mechanisms such as lysosomal permeabilization, potassium efflux, and mitochondrial ROS formation[23]. Inflammasome activation generates mature IL-1beta and IL-18, promoting inflammatory amplification. Chronic inflammasome activity is implicated in the progression of steatohepatitis and fibrosis.

4.3 Neutrophil Recruitment and NET Formation

Neutrophils are recruited early during hepatotoxicity and participate in clearing debris. However, neutrophil extracellular trap formation contributes to collateral tissue damage by releasing DNA, histones, and proteolytic enzymes[24]. Persistent neutrophil activation exacerbates necroinflammation and potentiates chronic liver injury.

4.4 Dendritic Cell and NK Cell Responses

Hepatic dendritic cells respond to xenobiotic-induced danger signals by maturing and presenting antigens to adaptive immune cells[25]. Natural killer cells recognize stressed hepatocytes and produce cytotoxic mediators, contributing to hepatocyte apoptosis. These interactions shape the balance between resolution and progression of inflammation[26].

5. Adaptive Immune Dysregulation

5.1 T Cell Responses

Reactive metabolite-adducted proteins can act as neoantigens, leading to activation of T cells. CD4 and CD8 T cells become major contributors to chronic inflammation when tolerance mechanisms fail[27]. Drugs such as halothane, tienilic acid, and certain antibiotics are well-known for inducing immune-mediated liver injury due to such neoantigen formation.

5.2 B Cell and Autoantibody Production

Xenobiotic-induced immune dysregulation can also activate B cells and promote production of autoantibodies against liver antigens[28]. These responses parallel autoimmune hepatitis and contribute to chronic hepatocellular inflammation.

5.3 Loss of Immune Tolerance

The liver is normally a tolerogenic organ, but hepatotoxicity disrupts immune homeostasis by altering cytokine balances and modifying antigen presentation pathways[29]. Loss of tolerance allows self-reactive lymphocytes to persist and contributes to long-term inflammatory diseases.

CONCLUSION

Hepatotoxicity-induced immune dysregulation represents a complex interplay between xenobiotic metabolism, oxidative stress, cellular danger signaling, and immune activation. While the liver's detoxification systems are essential for neutralizing xenobiotics, their byproducts often initiate inflammatory pathways that progress toward chronic liver disease. Understanding the mechanisms connecting metabolic stress to immune dysfunction is critical for developing targeted therapies and preventive strategies. Continued research into genetic susceptibility, microbiome interactions, and immune modulatory pathways will significantly advance the prevention and management of chronic inflammation induced by xenobiotic exposure.

REFERENCES

1. Kalra A, Yetiskul E, Wehrle CJ, et al. Physiology, Liver. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK535438/>
2. Massart J, Begriche K, Corlu A, Fromenty B. Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. International Journal of Molecular Sciences. 2022; 23(3):1062. <https://doi.org/10.3390/ijms23031062>
3. Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. Oxid Med Cell Longev. 2016;2016:4234061. doi: 10.1155/2016/4234061.

4. Aja O. A., Egba S. I., Uhuo Emmanuel Nnaemeka, Alaabo Prince Ogocukwu, Mba Obinna Joseph, and Oriaku Chinwe Edith. Hepatoprotective potentials of aqueous chloroform and methanol leaf extracts *Whitfieldia lateritia* 2, 4-dinitrophenylhydrazine induced anaemia in rats. *Bio-research and Biotechnology*, 2022; 20(2) 1434-1445
5. Phang-Lyn S, Llerena VA. Biochemistry, Biotransformation. [Updated 2023 Aug 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK544353/>
6. Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L, et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. *International Journal of Molecular Sciences*. 2021; 22(23):12808. <https://doi.org/10.3390/ijms222312808>
7. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. *Biol Chem*. 2009 Mar;390(3):191-214. doi: 10.1515/BC.2009.033.
8. Gomar S, Bou R, Puertas FJ, Miranda M, Romero FJ, Romero B. Current Insights into Glutathione Depletion in Adult Septic Patients. *Antioxidants*. 2025; 14(9):1033. <https://doi.org/10.3390/antiox14091033>
9. Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. *Dose Response*. 2022 Sep 21;20(3):15593258221120485. doi: 10.1177/15593258221120485.
10. Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. *Plants*. 2024; 13(4):523. <https://doi.org/10.3390/plants13040523>
11. Alum EU, Uti DE, Offor CE. Redox Signaling Disruption and Antioxidants in Toxicology: From Precision Therapy to Potential Hazards. *Cell Biochem Biophys* (2025). <https://doi.org/10.1007/s12013-025-01846-8>
12. Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen species. *Hypertension*. 2009 Jun;53(6):885-92. doi: 10.1161/HYPERTENSIONAHA.109.130054.
13. Radovic M, Gartzke LP, Wink SE, van der Kleij JA, Politiek FA, Krenning G. Targeting the Electron Transport System for Enhanced Longevity. *Biomolecules*. 2025; 15(5):614. <https://doi.org/10.3390/biom15050614>
14. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. *Physiol Rev*. 2014 Apr;94(2):329-54. doi: 10.1152/physrev.00040.2012.
15. Manful CF, Fordjour E, Subramaniam D, Sey AA, Abbey L, Thomas R. Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes. *International Journal of Molecular Sciences*. 2025; 26(15):7520. <https://doi.org/10.3390/ijms26157520>
16. Lafleur MA, Stevens JL, Lawrence JW. Xenobiotic perturbation of ER stress and the unfolded protein response. *Toxicol Pathol*. 2013 Feb;41(2):235-62. doi: 10.1177/0192623312470764.
17. Manghwar H, Li J. Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. *International Journal of Molecular Sciences*. 2022; 23(2):828. <https://doi.org/10.3390/ijms23020828>
18. Xiao K, Liu C, Tu Z, Xu Q, Chen S, Zhang Y, Wang X, Zhang J, Hu CA, Liu Y. Activation of the NF-κB and MAPK Signaling Pathways Contributes to the Inflammatory Responses, but Not Cell Injury, in IPEC-1 Cells Challenged with Hydrogen Peroxide. *Oxid Med Cell Longev*. 2020 Jan 21;2020:5803639. doi: 10.1155/2020/5803639.
19. Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. *J Hepatol*. 2020 Oct;73(4):933-951. doi: 10.1016/j.jhep.2020.04.033.
20. Kholodenko IV, Yarygin KN. Hepatic Macrophages as Targets for the MSC-Based Cell Therapy in Non-Alcoholic Steatohepatitis. *Biomedicines*. 2023; 11(11):3056. <https://doi.org/10.3390/biomedicines11113056>
21. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. *Compr Physiol*. 2013 Apr;3(2):785-97. doi: 10.1002/cphy.c120026.
22. Wicherka-Pawlowska K, Wróbel T, Rybka J. Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. *International Journal of Molecular Sciences*. 2021; 22(24):13397. <https://doi.org/10.3390/ijms222413397>

23. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. *Int J Mol Sci.* 2019 Jul 6;20(13):3328. doi: 10.3390/ijms20133328.
24. Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. *Cardiovasc Res.* 2022 Oct 21;118(13):2737-2753. doi: 10.1093/cvr/cvab329.
25. Méndez-Sánchez N, Córdova-Gallardo J, Barranco-Fragoso B, Eslam M. Hepatic Dendritic Cells in the Development and Progression of Metabolic Steatohepatitis. *Front Immunol.* 2021 Mar 23;12:641240. doi: 10.3389/fimmu.2021.641240.
26. Wang H, Li Y, Yu Q, Wang M, Ainiwaer A, Tang N, Zheng X, Duolikun A, Deng B, Li J, et al. Immunological Characteristics of Hepatic Dendritic Cells in Patients and Mouse Model with Liver Echinococcus multilocularis Infection. *Tropical Medicine and Infectious Disease.* 2024; 9(5):95. <https://doi.org/10.3390/tropicalmed9050095>
27. Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. *Immune Netw.* 2023 Oct 23;23(5):e41. doi: 10.4110/in.2023.23.e41.
28. He XS, Ansari AA, Gershwin ME. Xenobiotic considerations for the development of autoimmune liver diseases: bad genes and bad luck. *Rev Environ Health.* 2001 Jul-Sep;16(3):191-202. doi: 10.1515/reveh.2001.16.3.191.
29. Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. *Cell Mol Immunol.* 2016 May;13(3):267-76. doi: 10.1038/cmi.2016.3.

CITE AS: Maina Mwaura F. (2026). Hepatotoxicity-Induced Immune Dysregulation: Emerging Mechanisms Linking Xenobiotic Metabolism to Chronic Inflammation. IDOSR JOURNAL OF BIOCHEMISTRY, BIOTECHNOLOGY AND ALLIED FIELDS 11(1):42-46.
<https://doi.org/10.59298/IDOSR/JBBAF/2026/1024246>