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ABSTRACT

Oxidative stress is a central pathological mechanism underlying diverse complications in metabolic and systemic
disorders, including anaemia and neurotoxicity. Reactive oxygen and nitrogen species generated in excess can impair
erythropoiesis, shorten red blood cell lifespan, and compromise neural integrity, creating a bidirectional interplay
between hematologic and nervous system health. Anaemia and oxidative stress are frequently coexistent in chronic
diseases, with iron dysregulation, mitochondrial dysfunction, and inflammation contributing to erythroid
impairment. Simultaneously, neural tissue is highly susceptible to oxidative injury due to high metabolic demand,
limited endogenous antioxidant defenses, and excitotoxic vulnerability. Emerging evidence highlights shared
molecular pathways, including mitochondrial dysfunction, redox-sensitive transcription factors, inflammatory
cytokines, and nitric oxide signaling, that link impaired erythropoiesis with neurodegeneration. Therapeutic
strategies targeting oxidative stress, including endogenous and exogenous antioxidants, mitochondrial protectants,
and iron-modulating interventions, show potential to restore erythroid and neuronal homeostasis. This review
provides an integrative analysis of the mechanistic crosstalk between oxidative stress, anaemia, and neurotoxicity,
highlighting potential avenues for translational therapeutics.
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INTRODUCTION

Oxidative stress represents an imbalance between reactive oxygen species (ROS) and reactive nitrogen species
(RNS) production and the capacity of endogenous antioxidant systems to neutralize them [17]. Persistent oxidative
stress is implicated in the pathophysiology of a wide array of disorders, including diabetes, chronic kidney disease,
neurodegenerative diseases, and anemia. In hematopoietic tissues, excessive ROS disrupt erythropoiesis, damage
developing erythroid precursors, and reduce red blood cell (RBC) lifespan, contributing to functional and absolute
anemia [27]. Simultaneously, the nervous system is particularly vulnerable due to high oxygen consumption,
abundant polyunsaturated lipids, and comparatively low antioxidant capacity. Oxidative insults in neurons impair
mitochondrial function, disrupt ion homeostasis, and activate apoptotic pathways, leading to both central and
peripheral neurotoxicity [87]. The co-occurrence of anemia and neural dysfunction is increasingly recognized as a
clinical challenge in chronic disease. Iron dysregulation, inflammation-driven hepcidin elevation, and ROS-mediated
cellular injury not only compromise erythropoiesis but also exacerbate neural oxidative damage [47. This
bidirectional relationship creates a vicious cycle: anemia-induced hypoxia amplifies ROS production in neural tissues,
while oxidative neurotoxicity can affect systemic oxygen delivery and cognitive function [57]. Understanding the
molecular crosstalk between erythropoiesis and neural health is essential for developing integrative therapeutic
approaches that target shared oxidative and inflammatory pathways [67]. This review aims to consolidate
mechanistic insights into oxidative stress-mediated erythroid and neural dysfunction, explore the molecular
intersection of anemia and neurotoxicity, and highlight emerging strategies to restore redox balance and functional
homeostasis.

2. Oxidative Stress and Erythropoiesis

Erythropoiesis, the process by which red blood cells (RBCs) are produced, is exquisitely sensitive to redox
imbalances. Physiologically, reactive oxygen species (ROS) function as signaling molecules, regulating erythroid
progenitor differentiation and proliferation [77]. However, chronic oxidative stress, as observed in diabetes, chronic
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inflammation, or metabolic disorders, overwhelms these regulatory mechanisms, leading to impaired erythroid
development, reduced RBC output, and clinically significant anemia [87].

2.1 Iron Dysregulation and Hepcidin

Inflammatory states and metabolic dysregulation stimulate hepatic hepcidin synthesis, a peptide hormone that binds
to and degrades the iron exporter ferroportin. This mechanism traps iron within macrophages and enterocytes,
limiting its availability for hemoglobin synthesis [97]. Simultaneously, labile intracellular iron promotes Fenton
reactions, generating highly reactive hydroxyl radicals. These radicals directly damage erythroid precursors and
mature RBCs, exacerbating anemia [(107]. Iron dysregulation therefore contributes to a feed-forward cycle in which
oxidative stress and functional iron deficiency reinforce one another, compromising erythropoiesis at multiple levels.
2.2 Oxidative Damage to Erythroid Precursors

Excessive ROS directly injure the membranes, mitochondria, and nuclear material of developing erythroid cells
[11]. Lipid peroxidation decreases membrane fluidity and integrity, while oxidative modifications of DNA interfere
with transcription factors essential for erythropoiesis, including GATA-1 and NF-E2. These disruptions reduce
progenitor proliferation, impair differentiation, and decrease overall RBC output [127]. Mitochondrial dysfunction
within erythroid precursors further impairs heme biosynthesis and energy production, leading to ineffective
erythropoiesis and diminished oxygen-carrying capacity.

2.3 Reduced RBC Lifespan

Mature RBCs lack nuclei and mitochondria, rendering them dependent on intrinsic antioxidant systems, such as
glutathione, catalase, and peroxiredoxins, for protection against oxidative damage. ROS-mediated modifications of
membrane proteins and cytoskeletal elements increase susceptibility to hemolysis and premature clearance by the
spleen, further aggravating anemia even when erythropoiesis remains partially intact [137.

3. Oxidative Stress and Neural Health

Neurons are highly vulnerable to oxidative injury due to their high metabolic demand, abundant polyunsaturated
fatty acids, and relatively low levels of endogenous antioxidants. Chronic oxidative stress in conditions such as
diabetes, anemia, and systemic inflammation contributes to both structural and functional neural deficits, spanning
the peripheral and central nervous systems [14].

3.1 Mitochondrial Dysfunction and Bioenergetic Failure

ROS and reactive nitrogen species (RNS) damage mitochondrial DNA, proteins, and membranes, disrupting
oxidative phosphorylation and ATP production [157]. Energetic failure compromises ion homeostasis, axonal
transport, and synaptic function, predisposing neurons to degeneration and impaired signaling.

3.2 Excitotoxicity and Calcium Dysregulation

Elevated ROS exacerbate glutamate-mediated excitotoxicity, leading to intracellular calcium overload. This calcium
dysregulation activates proteases, phospholipases, and endonucleases, resulting in structural and functional neuronal
damage, including dendritic spine loss and axonal degeneration [167].

3.3 Neuroinflammation

Oxidative stress primes microglia toward a pro-inflammatory phenotype, promoting the release of cytokines and
additional ROS. This neuroinflammatory loop perpetuates neuronal injury, contributing to cognitive deficits,
peripheral neuropathy, and heightened susceptibility to neurodegenerative disorders [177].

3.4 DNA and Protein Damage

ROS and RNS induce oxidative modifications to DNA, RNA, and proteins, impairing transcription, translation, and
post-translational signaling pathways [187]. Accumulated oxidative lesions trigger apoptosis and cellular
senescence, further reducing neuronal viability and functional reserve. Together, these mechanisms illustrate how
systemic oxidative stress simultaneously compromises erythropoiesis and neuronal integrity, creating a
pathophysiological link between anemia and neurotoxicity [197]. Understanding this interplay provides a rationale
for interventions targeting redox balance to preserve both hematologic and neural health.

4. Crosstalk Between Erythropoiesis and Neural Health

Anemia and oxidative neurotoxicity are intimately interlinked, forming a bidirectional pathological loop. Reduced
RBC-mediated oxygen delivery leads to tissue hypoxia, which stimulates mitochondrial ROS production in neurons
and glial cells [207]. Hypoxia-inducible factor-1at (HIF-1a) signaling is activated under these conditions, further
promoting oxidative stress, inflammatory cytokine release, and mitochondrial dysfunction. Conversely, systemic
oxidative stress arising from chronic inflammation, hyperglycemia, or neurodegeneration exacerbates erythroid
precursor damage in the bone marrow, impairing differentiation, proliferation, and hemoglobin synthesis [217.
Shared molecular mediators reinforce this crosstalk. Mitochondrial ROS contribute to both erythroid and neural
cell injury, while activation of NF-kB and upregulation of inflammatory cytokines, including IL-6 and TNF-a, drive
erythropoietic suppression and neuronal inflammation [227. Nitric oxide species generated during oxidative and
nitrosative stress further impair iron metabolism, erythropoietin signaling, and neuronal function. Lipid
peroxidation and protein oxidation affect cell membrane integrity in RBCs and neurons alike, while DNA damage
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triggers apoptosis in both systems [237]. These intersecting pathways demonstrate that disruption in one system
can amplify injury in the other, emphasizing the necessity of integrative therapeutic strategies targeting oxidative
stress across erythroid and neural compartments.

5. Therapeutic Strategies Targeting Oxidative Stress
5.1 Endogenous Antioxidant Enhancement
Activation of endogenous defense mechanisms, primarily through Nrf2 and related transcriptional pathways,
increases the expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase
[247]. Enhanced enzymatic activity protects erythroid precursors from ROS-induced apoptosis, maintains RBC
membrane integrity, and stabilizes mitochondrial function in neurons, preserving synaptic activity and axonal
transport. Pharmacologic Nrf2 activators or phytochemicals with similar effects can bolster intrinsic cellular
defenses and reduce the burden of oxidative injury [257.
5.2 Exogenous Antioxidants
Dietary and supplemental antioxidants, including vitamins C and E, polyphenols such as resveratrol and quercetin,
and thiol donors like N-acetylcysteine, directly scavenge free radicals [267]. These compounds restore redox balance,
reduce lipid peroxidation, and protect mitochondrial and cellular structures. In erythroid cells, they improve survival
and maturation, while in neurons they mitigate excitotoxicity, preserve energy metabolism, and reduce
neuroinflammation.
5.3 Mitochondria-Targeted Therapies
Mitochondria-targeted antioxidants and bioactive compounds, designed to accumulate selectively in mitochondria,
reduce ROS generation at the source. By maintaining mitochondrial membrane potential and ATP synthesis, these
agents enhance erythropoietic efficiency, preserve neural bioenergetics, and improve synaptic function, directly
addressing a central node in the cross-system pathology [277].
5.4 Anti-Inflammatory and Iron-Modulating Approaches
Modulating inflammatory signaling through cytokine inhibition or reducing hepcidin activity improves iron
availability for erythropoiesis while simultaneously attenuating ROS-mediated neural injury [287. Controlling
systemic inflammation also reduces microglial activation, protecting neurons from chronic oxidative and
inflammatory insults.
5.5 Combination Strategies
Integrative therapeutic strategies that combine antioxidant supplementation, iron therapy, erythropoiesis-
stimulating agents, and neuroprotective interventions show the greatest promise in mitigating cross-system
oxidative damage [297. These approaches target multiple pathogenic mechanisms simultaneously, addressing the
interconnected nature of erythropoietic suppression and neurotoxicity, and potentially improving both hematologic
and cognitive outcomes in patients with metabolic and inflammatory disorders [307].

CONCLUSION
Oxidative stress is a central mediator linking anemia and neurotoxicity. Excess ROS damages erythroid precursors
and mature RBCs, impairs heme synthesis, and shortens RBC lifespan, while concurrently compromising neural
structure and function through mitochondrial dysfunction, excitotoxicity, and inflammation. Shared molecular
pathways underline the bidirectional crosstalk between erythropoiesis and neural health. Therapeutic strategies
enhancing endogenous antioxidants, providing exogenous ROS scavengers, targeting mitochondrial dysfunction,
and modulating inflammation and iron metabolism hold promise to restore redox balance and functional
homeostasis. An integrative approach addressing both hematologic and neural systems is critical for mitigating
oxidative stress-related complications in chronic disease.
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