

Antimalarial Drug Resistance Mechanisms and Treatment Outcomes in Sub-Saharan African Populations

Nalongo Bina K.

Faculty of Medicine Kampala International University Uganda

ABSTRACT

Malaria remained a leading cause of morbidity and mortality in Sub-Saharan Africa, where *Plasmodium falciparum* demonstrates increasing resistance to multiple antimalarial agents. The molecular basis of this resistance involved complex genetic mutations affecting drug targets, transporters, and metabolic pathways, with significant implications for treatment efficacy across diverse African populations. This review aims to synthesized current understanding of antimalarial drug resistance mechanisms in Sub-Saharan Africa and evaluated their impact on clinical treatment outcomes, with emphasis on artemisinin-based combination therapies and partner drugs. A comprehensive analysis of peer-reviewed literature examining molecular resistance markers, biochemical mechanisms, pharmacogenetic factors, and clinical efficacy data from Sub-Saharan African populations was conducted. Resistance to chloroquine and sulfadoxine-pyrimethamine is widespread, mediated primarily by mutations in *pfcrt*, *pfmdr1*, *pfdhfr*, and *pfdhps* genes. Partial artemisinin resistance, characterized by *kelch13* mutations, remained rare but surveillance data indicated emerging concerns in East Africa. Partner drug resistance threatened artemisinin-based combination therapy effectiveness, with piperaquine and lumefantrine showing reduced efficacy in specific regions. Population-specific factors including cytochrome P450 polymorphisms, nutritional status, and transmission intensity modulated treatment responses. Molecular surveillance revealed geographic heterogeneity in resistance allele frequencies, correlating with variable treatment failure rated across the continent. Antimalarial drug resistance in Sub-Saharan Africa presented a multifaceted challenge requiring integrated molecular surveillance, individualized treatment approaches, and development of novel therapeutic strategies to maintain effective malaria control.

Keywords: Antimalarial resistance, *Plasmodium falciparum*, Artemisinin combination therapy, Molecular markers, Treatment failure.

INTRODUCTION

Malaria parasites have developed sophisticated biochemical mechanisms to evade chemotherapeutic interventions, representing one of the most dynamic examples of evolutionary adaptation under pharmacological pressure [1]. The *Plasmodium falciparum* genome exhibits remarkable plasticity, enabling rapid selection of mutations that confer reduced susceptibility to antimalarial compounds [2, 3]. These resistance mechanisms operate through diverse molecular pathways including alterations in drug target proteins, enhanced efflux transporter expression, metabolic compensation, and epigenetic modifications affecting gene expression patterns. Chloroquine resistance emerged in the 1950s through mutations in the *Plasmodium falciparum* chloroquine resistance transporter gene, fundamentally altering the parasite's vacuolar pH regulation and drug accumulation dynamics [4]. Subsequently, resistance to antifolate combinations arose via sequential mutations in dihydrofolate reductase and dihydropteroate synthase enzymes, compromising folate biosynthesis inhibition. More recently, partial artemisinin resistance has been documented, mediated by mutations in the *kelch13* propeller domain that modify parasite developmental timing and oxidative stress responses during the ring stage of intraerythrocytic development.

The transition from drug-resistant parasites at the molecular level to clinically significant treatment failures involves complex interactions between parasite genetics, host immunity, pharmacokinetic variability, and transmission dynamics [5]. Sub-Saharan Africa bears a disproportionate malaria burden, accounting for approximately ninety percent of global cases and deaths, predominantly affecting children under five years and pregnant women [6, 7]. The region's high transmission intensity creates unique selective pressures on parasite populations while host acquired immunity partially masks treatment failures. Genetic diversity within African *P.*

falciparum populations, coupled with variable drug exposure due to inconsistent treatment adherence and substandard medication quality, accelerates resistance evolution. Furthermore, host pharmacogenetic polymorphisms affecting drug metabolism, particularly cytochrome P450 enzyme variants prevalent in African populations, introduce additional complexity to treatment outcomes [8]. Nutritional deficiencies, concurrent infections, and hemoglobinopathies common in Sub-Saharan populations further modulate drug efficacy and parasite clearance kinetics. This review synthesizes molecular resistance mechanisms and their translation to clinical treatment outcomes in Sub-Saharan African populations, evaluating evidence for current artemisinin-based combination therapies and emerging resistance threats.

Molecular Mechanisms of Chloroquine and Quinoline Resistance

Chloroquine resistance represents the paradigmatic example of antimalarial drug resistance, with molecular mechanisms now extensively characterized at biochemical and structural levels [9]. The *pfCRT* K76T mutation constitutes the primary determinant of chloroquine resistance, altering the digestive vacuole transmembrane protein to facilitate chloroquine efflux from the site of heme detoxification. This single amino acid substitution reduces chloroquine accumulation by approximately four to five fold, although full resistance phenotypes require additional mutations at positions 72 through 76 that collectively modify substrate specificity and transport kinetics. Structural studies demonstrate that these mutations create altered electrostatic environments within the transporter channel, reducing affinity for protonated chloroquine while maintaining physiological function for endogenous substrates. The *pfMDR1* gene encoding P-glycoprotein homolog 1 provides secondary modulation of quinoline resistance, with N86Y, Y184F, and D1246Y mutations conferring variable effects on chloroquine, amodiaquine, and mefloquine susceptibility through modifications in drug binding and efflux efficiency [10].

Biochemical investigations reveal that chloroquine-resistant parasites demonstrate enhanced glutathione metabolism and altered redox homeostasis, potentially compensating for reduced heme detoxification capacity when drug accumulation is diminished [11, 12]. Geographic distribution of resistance alleles across Sub-Saharan Africa displays marked heterogeneity, with *pfCRT* 76T frequencies exceeding ninety percent in East and Southern Africa but showing more variable patterns in West African populations [13]. Interestingly, chloroquine withdrawal in some regions has resulted in partial reversion to wild-type alleles, suggesting fitness costs associated with resistance mutations in the absence of drug pressure. However, compensatory mutations may stabilize resistant genotypes, complicating predictions about resistance reversibility. Cross-resistance patterns between chloroquine and amodiaquine involve overlapping but distinct molecular determinants, with *pfCRT* and *pfMDR1* mutations producing differential effects on these structurally related quinolines. Piperaquine resistance, increasingly relevant given its use in dihydroartemisinin-piperaquine combinations, involves novel mutations in *pfCRT* and potential contributions from plasmepsin 2 and 3 gene amplifications, though mechanisms remain incompletely understood [14].

Antifolate Resistance and Dihydrofolate Reductase Pathway Alterations

Resistance to sulfadoxine-pyrimethamine, previously a cornerstone of intermittent preventive treatment strategies, exemplifies sequential accumulation of point mutations conferring incremental resistance. The dihydrofolate reductase enzyme targeted by pyrimethamine undergoes mutations at positions 51, 59, 108, and 164, with each substitution progressively reducing drug binding affinity while attempting to preserve catalytic efficiency for folate reduction [15]. The S108N mutation alone confers low level resistance, while double mutations including N51I or C59R produce moderate resistance, and triple mutations substantially compromise pyrimethamine efficacy. Kinetic analyses demonstrate that resistant DHFR variants exhibit altered substrate binding constants and reduced inhibitor affinity, with the 108N mutation specifically disrupting hydrogen bonding interactions critical for pyrimethamine coordination within the active site [16, 17]. Quadruple mutations including I164L essentially ablate pyrimethamine effectiveness, rendering the drug clinically obsolete in regions where these alleles predominate.

Sulfadoxine targets dihydropteroate synthase in the folate biosynthesis pathway, with resistance mutations at codons 436, 437, 540, 581, and 613 independently and additively reducing drug susceptibility [18]. The molecular mechanism involves structural alterations in the enzyme's substrate binding pocket, decreasing affinity for the sulfa drug while maintaining para-aminobenzoic acid binding necessary for folate synthesis. Notably, the A581G mutation confers particularly high level sulfadoxine resistance and shows increasing prevalence in East African populations. Combined *pfdhfr* and *pfdhps* mutations produce synergistic resistance to the sulfadoxine-pyrimethamine combination, with quintuple mutants demonstrating treatment failure rates exceeding fifty percent in clinical trials [19]. Molecular surveillance across Sub-Saharan Africa reveals a concerning gradient of resistance allele frequencies, with highest prevalence in East Africa where sulfadoxine-pyrimethamine use has been most intensive, and lower but increasing frequencies in West and Central Africa [20]. Population genetic analyses indicate multiple independent origins of resistance mutations, followed by positive selection and geographic spread through both human migration and parasite gene flow. These findings underscore the critical relationship between drug pressure intensity and resistance evolution dynamics.

Artemisinin Resistance Mechanisms and *Kelch13* Mutations

Artemisinin resistance presents the most pressing contemporary threat to malaria control, characterized by delayed parasite clearance following artemisinin-based treatment rather than complete treatment failure [21]. The molecular basis centers on mutations in the *kelch13* gene, encoding a protein with a propeller domain structure containing multiple kelch repeats that likely functions in protein-protein interactions and cellular signaling pathways. The C580Y mutation, predominant in Southeast Asian resistant parasites, induces a developmental arrest or quiescence in early ring stage parasites, enabling survival during the brief period of artemisinin exposure [22, 23]. This survival mechanism involves complex transcriptional reprogramming, enhanced cellular stress responses, and metabolic adaptations that reduce artemisinin-induced oxidative damage. Biochemical studies demonstrate that artemisinin activation requires iron-catalyzed cleavage of the endoperoxide bridge, generating carbon-centered free radicals that alkylate multiple parasite proteins and lipids. Resistant parasites appear to limit artemisinin activation through reduced hemoglobin endocytosis and altered phosphatidylinositol 3-kinase signaling, thereby decreasing exposure to iron sources necessary for drug activation.

In Sub-Saharan Africa, *kelch13* mutations remain relatively rare, with surveillance studies documenting sporadic occurrence of candidate resistance mutations including A675V and C469Y in East African countries, particularly Rwanda and Uganda [24]. However, these African *kelch13* variants do not consistently associate with delayed clearance phenotypes observed in Southeast Asia, suggesting genetic background effects, different resistance mechanisms, or requirement for additional genetic changes. The A675V mutation shows modest increases in ring stage survival rates in *in vitro* assays but unclear clinical significance. Importantly, wild-type *kelch13* parasites in Africa occasionally exhibit delayed clearance, implicating alternative or complementary resistance mechanisms potentially involving ferredoxin, apicoplast function, or mitochondrial metabolism [25]. Population genetic analyses reveal limited selective sweeps around *kelch13* loci in Africa compared to Southeast Asia, consistent with lower artemisinin monotherapy exposure due to effective artemisinin-based combination therapy deployment policies. Nevertheless, emerging resistance signals warrant intensified surveillance given the potential for rapid spread once resistance alleles achieve appreciable frequencies. The distinct epidemiological context of high transmission intensity, substantial host immunity, and shorter treatment courses in Africa may modulate resistance manifestation and detection, necessitating adapted surveillance strategies incorporating molecular markers, *in vitro* assays, and clinical monitoring.

Partner Drug Resistance Affecting Artemisinin-Based Combination Therapies

The effectiveness of artemisinin-based combination therapies depends critically on partner drug efficacy, as artemisinins rapidly reduce parasite biomass but are eliminated quickly, leaving partner drugs to eliminate residual parasites [26]. Lumefantrine resistance mechanisms remain incompletely characterized but involve *pfmdr1* copy number variation and specific amino acid polymorphisms that modulate drug transport and accumulation. Parasites with increased *pfmdr1* copy number demonstrate reduced lumefantrine susceptibility *in vitro*, though clinical correlations remain inconsistent across African settings. The N86Y and D1246Y polymorphisms in *pfmdr1* create complex genotype-phenotype relationships, with 86N associated with reduced lumefantrine susceptibility but enhanced susceptibility to other antimalarials including mefloquine and artemisinin [27]. This molecular seesaw effect complicates resistance evolution, as selection for one drug may inadvertently restore susceptibility to others. Pharmacokinetic factors substantially influence artemether-lumefantrine treatment outcomes, with lumefantrine's highly lipophilic nature producing variable absorption dependent on dietary fat intake and individual metabolic capacity.

Piperaquine resistance poses significant concerns for dihydroartemisinin-piperaquine effectiveness, particularly following documentation of treatment failures in Southeast Asia associated with plasmepsin 2 and 3 gene amplifications combined with *kelch13* mutations [28]. In Sub-Saharan Africa, piperaquine resistance markers remain uncommon, though baseline surveillance detected *pf crt* mutations and occasional plasmepsin amplifications in East African isolates. The mechanism involves increased hemoglobin degradation capacity enabling parasites to tolerate piperaquine's interference with heme detoxification, though details require further elucidation. Amodiaquine, partnered with artesunate in several African countries, faces resistance mediated by overlapping *pf crt* and *pfmdr1* mutations conferring chloroquine resistance, raising concerns about durability given historical chloroquine resistance patterns [29]. Mefloquine resistance involves primarily *pfmdr1* amplification and specific polymorphisms, with limited deployment in Africa preventing widespread resistance evolution. Pyronaridine, a partner drug in recent combination formulations, demonstrates activity against chloroquine-resistant parasites but potential cross-resistance with other quinolines requires monitoring. Surveillance data across Sub-Saharan Africa document geographic variability in partner drug susceptibility, with some regions showing declining efficacy for specific combinations while others maintain high cure rates, emphasizing the importance of tailored treatment policies reflecting local resistance landscapes [30].

Host Pharmacogenetic Factors and Population-Specific Treatment Response Modifiers

Pharmacogenetic variability in African populations substantially influences antimalarial drug metabolism, disposition, and ultimately therapeutic outcomes, yet remains inadequately integrated into treatment guidelines and resistance assessments. Cytochrome P450 2C8 variants, particularly CYP2C82 allele with prevalence reaching twenty percent in some African populations, significantly reduce amodiaquine and chloroquine metabolism, increasing parent drug exposure while decreasing active metabolite formation [31]. This alteration produces complex effects on treatment efficacy and toxicity risk, with some studies documenting enhanced therapeutic responses while others report increased adverse events including neutropenia and hepatotoxicity. Lumefantrine metabolism involves CYP3A4 and CYP3A5 enzymes, with genetic polymorphisms creating substantial interindividual variability in drug exposure. The CYP3A51 allele, expressed in approximately sixty to eighty percent of African individuals compared to ten to twenty percent of European populations, increases lumefantrine clearance, potentially reducing treatment efficacy in carriers though clinical evidence remains inconsistent.

N-acetyltransferase 2 polymorphisms affect sulfadoxine pharmacokinetics, with slow acetylator phenotypes predominating in many African populations, potentially enhancing sulfadoxine exposure and efficacy despite DHPS resistance mutations [32]. Glucose-6-phosphate dehydrogenase deficiency, affecting up to twenty percent of males in malaria-endemic African regions, precludes use of primaquine and other 8-aminoquinolines due to hemolysis risk, limiting transmission-blocking and radical cure options. Hemoglobin variants including sickle cell trait and alpha thalassemia, prevalent in African populations due to malaria-driven selection, modulate both malaria susceptibility and treatment responses through effects on parasite invasion, intraerythrocytic development, and immune recognition [33]. Nutritional status significantly impacts antimalarial pharmacokinetics, with protein-energy malnutrition reducing drug absorption and distribution while potentially altering hepatic metabolism. Iron deficiency, widespread in African children and pregnant women, theoretically reduces artemisinin activation through decreased iron availability, though clinical evidence for reduced efficacy remains limited. Immunity acquired through repeated malaria exposure in high transmission settings enhances parasite clearance independent of drug efficacy, potentially masking partial drug resistance in clinical assessments while influencing resistance evolution through incomplete parasite elimination. These multifactorial host determinants necessitate population-specific evaluation of antimalarial efficacy beyond simple parasite resistance genotyping.

CONCLUSION

Antimalarial drug resistance in Sub-Saharan Africa represents a complex, evolving threat shaped by parasite molecular adaptations, host genetic factors, and operational implementation challenges. Chloroquine and sulfadoxine-pyrimethamine resistance mechanisms are well characterized, with high frequency resistance alleles across most African regions rendering these drugs ineffective for treatment while maintaining roles in intermittent preventive therapy under defined circumstances. Artemisinin resistance remains uncommon in Africa compared to Southeast Asia, but molecular surveillance detects concerning signals requiring intensified monitoring given catastrophic implications of widespread artemisinin resistance for malaria control achievements. Partner drug resistance increasingly threatens artemisinin-based combination therapy effectiveness, with geographic heterogeneity demanding tailored treatment policies reflecting local resistance patterns. Host pharmacogenetic variability introduces additional complexity to treatment outcomes, with cytochrome P450 polymorphisms, hemoglobinopathies, and nutritional factors modulating drug exposure and efficacy in ways incompletely integrated into clinical practice or resistance assessments. Evidence quality varies substantially, with robust molecular characterization of resistance mechanisms contrasted against limited longitudinal surveillance data, inconsistent clinical outcome reporting, and inadequate pharmacokinetic studies in diverse African populations. Critical knowledge gaps include incomplete understanding of artemisinin resistance mechanisms in African genetic backgrounds, limited data on resistance evolution dynamics under operational conditions, and insufficient evaluation of combination approaches to delay resistance emergence. Future strategies must integrate molecular surveillance, therapeutic efficacy monitoring, and host pharmacogenetic considerations within comprehensive resistance management frameworks. National malaria control programs should implement integrated surveillance systems combining molecular resistance marker monitoring, therapeutic efficacy studies, and pharmacokinetic assessments to enable evidence-based treatment policy adaptations responsive to evolving resistance patterns in specific populations.

REFERENCES

1. Yadav, D.K., Kumar, S., Teli, M.K., Yadav, R., Chaudhary, S.: Molecular Targets for Malarial Chemotherapy: A Review. *Current Topics in Medicinal Chemistry.* 19, 861–873 (2019). <https://doi.org/10.2174/15680266190603080000>
2. Luth, M.R., Godinez-Macias, K.P., Chen, D., Okombo, J., Thathy, V., Cheng, X., Daggupati, S., Davies, H., Dhingra, S.K., Economy, J.M., Edgar, R.C.S., Gomez-Lorenzo, M.G., Istvan, E.S., Jado, J.C., LaMonte, G.M., Melillo, B., Mok, S., Narwal, S.K., Ndiaye, T., Otilie, S., Palomo Diaz, S., Park, H., Peña, S., Rocamora, F., Sakata-Kato, T., Small-Saunders, J.L., Summers, R.L., Tumwebaze, P.K., Vanaerschot, M., Xia, G., Yeo, T.,

You, A., Gamo, F.-J., Goldberg, D.E., Lee, M.C.S., McNamara, C.W., Ndiaye, D., Rosenthal, P.J., Schreiber, S.L., Serra, G., De Siqueira-Neto, J.L., Skinner-Adams, T.S., Uhlemann, A.-C., Kato, N., Lukens, A.K., Wirth, D.F., Fidock, D.A., Winzeler, E.A.: Systematic in vitro evolution in *Plasmodium falciparum* reveals key determinants of drug resistance. *Science*. 386, eadk9893 (2024). <https://doi.org/10.1126/science.adk9893>

3. Verlinden, B.K., Louw, A., Birkholtz, L.-M.: Resisting resistance: is there a solution for malaria? *Expert Opinion on Drug Discovery*. 11, 395–406 (2016). <https://doi.org/10.1517/17460441.2016.1154037>

4. Amambua-Ngwa, A., Button-Simons, K.A., Li, X., Kumar, S., Brenneman, K.V., Ferrari, M., Checkley, L.A., Haile, M.T., Shoue, D.A., McDew-White, M., Tindall, S.M., Reyes, A., Delgado, E., Dalhoff, H., Larbalestier, J.K., Amato, R., Pearson, R.D., Taylor, A.B., Nosten, F.H., D'Alessandro, U., Kwiatkowski, D., Cheeseman, I.H., Kappe, S.H.I., Avery, S.V., Conway, D.J., Vaughan, A.M., Ferdig, M.T., Anderson, T.J.C.: Chloroquine resistance evolution in *Plasmodium falciparum* is mediated by the putative amino acid transporter AAT1. *Nat Microbiol*. 8, 1213–1226 (2023). <https://doi.org/10.1038/s41564-023-01377-z>

5. Idris, O.A., Wintola, O.A., Afolayan, A.J.: Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. *Heliyon*. 5, (2019). <https://doi.org/10.1016/j.heliyon.2019.e01161>

6. Tufail, T., Agu, P.C., Akinloye, D.I., Obaroh, I.O.: Malaria pervasiveness in Sub-Saharan Africa: Overcoming the scuffle. *Medicine*. 103, e40241 (2024). <https://doi.org/10.1097/MD.00000000000040241>

7. Erisa, K., Raphael, I., Paul-Chima, U.O., Ugo, A.E.: Exploration of Medicinal Plants Used in the Management of Malaria in Uganda. *OPEN ACCESS*. (2023)

8. Marwa, K.J., Kapesa, A., Kamugisha, E., Swedberg, G.: The Influence of Cytochrome P450 Polymorphisms on Pharmacokinetic Profiles and Treatment Outcomes Among Malaria Patients in Sub-Saharan Africa: A Systematic Review. *Pharmacogenomics and Personalized Medicine*. 16, 449–461 (2023). <https://doi.org/10.2147/PGPM.S379945>

9. Guantai, E., Chibale, K.: Chloroquine Resistance: Proposed Mechanisms and Countermeasures. *CDD*. 7, 312–323 (2010). <https://doi.org/10.2174/156720110793360577>

10. Veiga, M.I., Dhingra, S.K., Henrich, P.P., Straimer, J., Gnädig, N., Uhlemann, A.-C., Martin, R.E., Lehane, A.M., Fidock, D.A.: Globally prevalent PfMDR1 mutations modulate *Plasmodium falciparum* susceptibility to artemisinin-based combination therapies. *Nat Commun*. 7, 11553 (2016). <https://doi.org/10.1038/ncomms11553>

11. Willems, A., Oertel, T., Roepe, P.D.: Redox Homeostasis within the Drug-Resistant Malarial Parasite Digestive Vacuole. *Biochemistry*. 64, 2247–2261 (2025). <https://doi.org/10.1021/acs.biochem.4c00750>

12. Müller, S.: Role and Regulation of Glutathione Metabolism in *Plasmodium falciparum*. *Molecules*. 20, 10511–10534 (2015). <https://doi.org/10.3390/molecules200610511>

13. Ocan, M., Akena, D., Nsobya, S., Kamya, M.R., Senono, R., Kinengyere, A.A., Obuku, E.A.: Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. *Malaria Journal*. 18, 76 (2019). <https://doi.org/10.1186/s12936-019-2716-z>

14. Kane, J., Li, X., Kumar, S., Button-Simons, K.A., Vendrely Brenneman, K.M., Dahlhoff, H., Sievert, M.A.C., Checkley, L.A., Shoue, D.A., Singh, P.P., Abatiyow, B.A., Haile, M.T., Nair, S., Reyes, A., Tripura, R., Peto, T.J., Lek, D., Mukherjee, A., Kappe, S.H.I., Dhorda, M., Nkhoma, S.C., Cheeseman, I.H., Vaughan, A.M., Anderson, T.J.C., Ferdig, M.T.: A *Plasmodium falciparum* genetic cross reveals the contributions of pfCRT and plasmepsin II/III to piperaquine drug resistance. *mBio*. 15, e00805-24 (2024). <https://doi.org/10.1128/mbio.00805-24>

15. Shamshad, H., Bakri, R., Mirza, A.Z.: Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: successful targets against some infectious diseases. *Mol Biol Rep*. 49, 6659–6691 (2022). <https://doi.org/10.1007/s11033-022-07266-8>

16. Amusengeri, A., Tata, R.B., Tastan Bishop, Ö.: Understanding the Pyrimethamine Drug Resistance Mechanism via Combined Molecular Dynamics and Dynamic Residue Network Analysis. *Molecules*. 25, 904 (2020). <https://doi.org/10.3390/molecules25040904>

17. Cetin, E., Atilgan, A.R., Atilgan, C.: DHFR Mutants Modulate Their Synchronized Dynamics with the Substrate by Shifting Hydrogen Bond Occupancies. *J. Chem. Inf. Model.* 62, 6715–6726 (2022). <https://doi.org/10.1021/acs.jcim.2c00507>

18. Zhao, L., Pi, L., Qin, Y., Lu, Y., Zeng, W., Xiang, Z., Qin, P., Chen, X., Li, C., Zhang, Y., Wang, S., Si, Y., Yang, G., Rosenthal, B.M., Huang, Y., Yang, Z.: Widespread resistance mutations to sulfadoxine-pyrimethamine in malaria parasites imported to China from Central and Western Africa. *Int J Parasitol Drugs Drug Resist*. 12, 1–6 (2019). <https://doi.org/10.1016/j.ijpddr.2019.11.002>

19. Bwire, G.M., Mikomangwa, W.P., Kilonzi, M.: Occurrence of septuple and elevated PfDHFR-PfDHPS quintuple mutations in a general population threatens the use of sulfadoxine-pyrimethamine for malaria prevention during pregnancy in eastern-coast of Tanzania. *BMC Infect Dis*. 20, 530 (2020). <https://doi.org/10.1186/s12879-020-05253-7>

20. Ainebyoona, C., Egwu, C.O., Onohuean, H., Ugwu, O.P.-C., Uti, D.E., Echegu, D.A.: Mitigation of Malaria in Sub-Saharan Africa through Vaccination: A Budding Road Map for Global Malaria Eradication. *Ethiopian Journal of Health Sciences.* 35, (2025)
21. Ouji, M., Augereau, J.-M., Paloque, L., Benoit-Vical, F.: Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. *Parasite.* 25, 24. <https://doi.org/10.1051/parasite/2018021>
22. Woodrow, C.J., White, N.J.: The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. *FEMS Microbiol Rev.* 41, 34–48 (2017). <https://doi.org/10.1093/femsre/fuw037>
23. Pandit, K., Surolia, N., Bhattacharjee, S., Karmodiya, K.: The many paths to artemisinin resistance in Plasmodium falciparum. *Trends in Parasitology.* 39, 1060–1073 (2023). <https://doi.org/10.1016/j.pt.2023.09.011>
24. Ndwiga, L., Kimenyi, K.M., Wamae, K., Osoti, V., Akinyi, M., Omedo, I., Ishengoma, D.S., Duah-Quashie, N., Andagalu, B., Ghansah, A., Amambua-Ngwa, A., Tukwasibwe, S., Tessema, S.K., Karema, C., Djimde, A.A., Dondorp, A.M., Raman, J., Snow, R.W., Bejon, P., Ochola-Oyier, L.I.: A review of the frequencies of *Plasmodium falciparum* Kelch 13 artemisinin resistance mutations in Africa. *International Journal for Parasitology: Drugs and Drug Resistance.* 16, 155–161 (2021). <https://doi.org/10.1016/j.ijpddr.2021.06.001>
25. Oyegbade, S.A., Mameh, E.O., Balogun, D.O., Aririguzoh, V.-G.O., Akinduti, P.A.: Emerging Plasmodium falciparum K13 gene mutation to artemisinin-based combination therapies and partner drugs among malaria-infected population in sub-Saharan Africa. *Parasites Hosts Dis.* 63, 109–122 (2025). <https://doi.org/10.3347/PHD.24053>
26. Ouji, M., Augereau, J.-M., Paloque, L., Benoit-Vical, F.: Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. *Parasite.* 25, 24. <https://doi.org/10.1051/parasite/2018021>
27. Veiga, M.I., Dhingra, S.K., Henrich, P.P., Straimer, J., Gnädig, N., Uhlemann, A.-C., Martin, R.E., Lehane, A.M., Fidock, D.A.: Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. *Nat Commun.* 7, 11553 (2016). <https://doi.org/10.1038/ncomms11553>
28. Ross, L.S., Dhingra, S.K., Mok, S., Yeo, T., Wicht, K.J., Kümpornsins, K., Takala-Harrison, S., Witkowski, B., Fairhurst, R.M., Ariey, F., Menard, D., Fidock, D.A.: Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. *Nat Commun.* 9, 3314 (2018). <https://doi.org/10.1038/s41467-018-05652-0>
29. Folarin, O.A., Bustamante, C., Gbotosho, G.O., Sowunmi, A., Zalis, M.G., Oduola, A.M.J., Hippi, C.T.: In vitro Amodiaquine Resistance and its Association with Mutations in pfCRT and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria. *Acta Trop.* 120, 224–230 (2011). <https://doi.org/10.1016/j.actatropica.2011.08.013>
30. Mezieobi, K.C., Ugwu, O.P.-C., Uti, D.E., Egba, S.I., Ewah, C.M.: Economic burden of malaria on developing countries: A mini review. *Parasite Epidemiology and Control.* 30, e00435 (2025). <https://doi.org/10.1016/j.parepi.2025.e00435>
31. Pernaute-Lau, L., Morris, U., Msellem, M., Mårtensson, A., Björkman, A., Gil, J.P.: Influence of cytochrome P450 (CYP) 2C8 polymorphisms on the efficacy and tolerability of artesunate-amodiaquine treatment of uncomplicated Plasmodium falciparum malaria in Zanzibar. *Malar J.* 20, 90 (2021). <https://doi.org/10.1186/s12936-021-03620-6>
32. Mthiyane, T., Millard, J., Adamson, J., Balakrishna, Y., Connolly, C., Owen, A., Rustomjee, R., Dheda, K., McIlleron, H., Pym, A.S.: N-Acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and N-Acetyl-Isoniazid Pharmacokinetics during Antituberculosis Treatment. *Antimicrob Agents Chemother.* 64, e02376-19 (2020). <https://doi.org/10.1128/AAC.02376-19>
33. Bougouma, E.C., Sirima, S.B., Bougouma, E.C., Sirima, S.B.: Inherited Disorders of Hemoglobin and *Plasmodium falciparum* Malaria. In: *Human Blood Group Systems and Haemoglobinopathies.* IntechOpen (2020)

CITE AS: Nalongo Bina K. (2026). Antimalarial Drug Resistance Mechanisms and Treatment Outcomes in Sub Saharan African Populations. IDOSR JOURNAL OF BIOCHEMISTRY, BIOTECHNOLOGY AND ALLIED FIELDS 11(1):89-94. <https://doi.org/10.59298/IDOSR/JBBAF/2026/1028994>