

Advances in Vector Control and Gene Drive Technologies for Sustainable Malaria Elimination in Sub-Saharan Africa

Nalongo Bina K.

Faculty of Medicine Kampala International University Uganda

ABSTRACT

Malaria transmission in sub-Saharan Africa remained critically dependent on *Anopheles* mosquito vectors, with existing control strategies including insecticide-treated nets and indoor residual spraying facing challenges from insecticide resistance, behavioral adaptation, and operational sustainability limitations. Innovative vector control approaches, particularly gene drive technologies that propagated desired traits through mosquito populations, offer transformative potential for malaria elimination. This review examined recent advances in vector control methodologies and gene drive systems, evaluating their molecular mechanisms, implementation feasibility, ecological implications, and potential contribution to sustainable malaria elimination in sub-Saharan Africa. A comprehensive analysis of contemporary literature on novel vector control strategies, CRISPR-based gene drives, population suppression and modification approaches, insecticide resistance mechanisms, and field implementation studies was conducted. Conventional vector control efficacy has declined due to widespread pyrethroid resistance mediated by target site mutations and metabolic detoxification mechanisms. Next-generation insecticides targeting alternative physiological pathways showed promise but required integrated resistance management. CRISPR-Cas9 gene drive systems enabled population suppression through female sterility or sex ratio distortion, and population modification through antipathogen effector genes that block *Plasmodium* transmission. Laboratory cage trials demonstrated drive efficiency exceeding 95 percent, though ecological modeling reveals potential for resistance allele evolution and drive failure. Regulatory frameworks, community engagement protocols, and contained field trial designs are advancing toward responsible testing. Gene drive technologies represented a paradigmatic shift in vector control, offering self-sustaining interventions that could dramatically reduce malaria transmission. However, substantial uncertainties regarding ecological consequences, resistance evolution, transboundary governance, and equitable access necessitate cautious, stepwise progression with robust monitoring and adaptive management frameworks to ensure sustainable and ethical deployment.

Keywords: Malaria vector control, Gene drive technology, *Anopheles* mosquitoes, Insecticide resistance, CRISPR-Cas9.

INTRODUCTION

Anopheles mosquitoes serve as obligate vectors for *Plasmodium falciparum* malaria transmission, with approximately 40 species capable of sustaining endemic transmission and several dominant vectors driving the majority of disease burden across sub-Saharan Africa [1, 2]. Vector control interventions, particularly long-lasting insecticidal nets and indoor residual spraying, contributed substantially to the 40 percent reduction in malaria mortality observed between 2000 and 2015, establishing vector control as the cornerstone of malaria elimination strategies [3, 4]. However, these gains have stagnated in recent years, with insecticide resistance now documented in all major vector species across endemic regions. The molecular basis of resistance involves multiple mechanisms including target site modifications in voltage-gated sodium channels conferring knockdown resistance, elevated expression of metabolic detoxification enzymes including cytochrome P450 monooxygenases and glutathione S-transferases, and cuticular thickening that reduces insecticide penetration. Additionally, behavioral adaptations including shifts toward outdoor biting and earlier feeding times enable vectors to circumvent interventions targeting indoor resting and nocturnal blood-feeding behaviors.

The evolutionary flexibility of *Anopheles* populations, combined with operational challenges including insecticide cost, supply chain constraints, community compliance variability, and environmental concerns regarding chemical persistence, necessitates development of transformative vector control technologies. Gene drive systems, which

employ molecular mechanisms to bias inheritance and propagate engineered genetic elements through populations at super-Mendelian frequencies, offer unprecedented potential for self-sustaining vector control [5]. These technologies exploit homing endonuclease genes or CRISPR-Cas9 systems to achieve germline conversion rates approaching 100 percent, enabling introduced traits to spread rapidly even when conferring fitness costs [6]. Two principal gene drive strategies have emerged: population suppression approaches that reduce vector abundance through sex ratio distortion or conditional lethality, and population replacement strategies that render mosquitoes refractory to *Plasmodium* infection through expression of antipathogen effector molecules. Theoretical models project that gene drives could eliminate local vector populations or interrupt transmission within 10 to 20 mosquito generations, timescales unattainable with conventional interventions. However, considerable debate surrounds ecological risks, evolutionary countermeasures, regulatory requirements, and ethical considerations governing deployment. This review critically examines advances in vector control methodologies and gene drive technologies, evaluating their molecular mechanisms, efficacy evidence, implementation challenges, and potential contribution to sustainable malaria elimination in sub-Saharan Africa.

Mechanisms and Epidemiology of Insecticide Resistance in African Malaria Vectors

Insecticide resistance represents the primary threat to conventional vector control sustainability, with resistance documented to all four insecticide classes approved for public health use: pyrethroids, organochlorines, organophosphates, and carbamates [7]. Pyrethroid resistance is particularly concerning given that pyrethroids remain the only insecticide class approved for insecticide-treated nets, which constitute the most widely deployed malaria prevention tool. The molecular mechanisms underlying pyrethroid resistance are multifaceted and often co-occur within individual mosquitoes, creating high-level resistance phenotypes. Knockdown resistance mutations, primarily L1014F and L1014S substitutions in the voltage-gated sodium channel gene, confer target site insensitivity and occur at frequencies exceeding 80 percent in many West African populations [8]. These mutations reduce pyrethroid binding affinity while preserving sufficient channel function for normal neurophysiology, representing a classic example of antagonistic pleiotropy where adaptive value under insecticide pressure outweighs modest fitness costs in untreated environments.

Metabolic resistance mechanisms involve elevated expression of detoxification enzyme families that convert insecticides to inactive metabolites before they reach target sites. Cytochrome P450 monooxygenases, particularly genes within the CYP6 and CYP9 families, exhibit dramatic overexpression in resistant populations, with some transcripts showing 100-fold increases relative to susceptible strains [9]. Glutathione S-transferases and carboxylesterases contribute additionally, with epsilon class GSTs showing particularly strong associations with dichlorodiphenyltrichloroethane and pyrethroid resistance. The genetic basis of metabolic resistance includes cis-regulatory mutations that enhance transcription, gene duplication events that increase gene dosage, and trans-acting regulatory variants affecting multiple detoxification loci simultaneously. Importantly, these mechanisms exhibit considerable geographic heterogeneity, with resistance alleles showing independent evolutionary origins across the African continent, complicating molecular surveillance efforts that rely on detection of specific resistance markers. Recent studies employing transcriptomic and proteomic approaches have revealed additional resistance mechanisms including cuticular proteins that reduce insecticide penetration rates and behavioral modifications that decrease contact with treated surfaces. Synergism studies using piperonyl butoxide, which inhibits cytochrome P450 activity, restore pyrethroid susceptibility in many resistant populations, validating metabolic mechanisms and informing development of synergist-insecticide combinations now deployed in second-generation insecticide-treated nets [10]. Epidemiological investigations correlating resistance intensity with intervention effectiveness yield conflicting results, with some studies documenting maintained efficacy despite high-frequency resistance while others show substantial impact erosion. This heterogeneity likely reflects variability in resistance mechanisms, mosquito behaviors, intervention coverage levels, and local transmission intensities. These findings underscore the urgent need for diversified vector control tools that circumvent existing resistance mechanisms while implementing stewardship strategies to preserve insecticide efficacy.

Next-Generation Vector Control Tools and Integrated Resistance Management

Diversification of vector control approaches beyond pyrethroid-based interventions constitutes a critical strategy for managing resistance and sustaining malaria control gains. Several next-generation insecticides targeting alternative physiological pathways have advanced through development pipelines, with some achieving regulatory approval and operational deployment. Neonicotinoids, which act as nicotinic acetylcholine receptor agonists, demonstrate potent activity against pyrethroid-resistant vectors and exhibit favorable toxicological profiles with limited mammalian toxicity [11]. Clothianidin has been formulated for indoor residual spraying applications and shows promising field efficacy, though concerns regarding impacts on non-target insects, particularly pollinators, have prompted careful environmental risk assessments. Pyrroles, exemplified by chlorgafenapyr, function as mitochondrial uncouplers that disrupt oxidative phosphorylation, providing a novel mechanism unaffected by knockdown resistance or conventional metabolic detoxification pathways. Field trials in Côte d'Ivoire demonstrate

superior efficacy of chlорfenapyr-incorporated nets compared to pyrethroid-only nets in high-resistance settings, supporting recent prequalification for large-scale deployment [12].

Insect growth regulators including juvenile hormone analogues and chitin synthesis inhibitors offer developmental disruption mechanisms that prevent larval maturation and adult emergence. Pyriproxyfen, a juvenile hormone mimic, contaminates breeding sites when carried by adult mosquitoes, sterilizing subsequent generations and providing sustained population suppression [13]. Autodissemination strategies that exploit mosquito behavior to transfer pyriproxyfen from contaminated surfaces to cryptic breeding sites show promise for targeting inaccessible larval habitats. However, operational scalability and cost-effectiveness relative to conventional larvicide remain uncertain. Attractive toxic sugar baits exploit mosquito sugar-feeding behaviors, delivering oral insecticides mixed with plant-derived sugars and attractive odorants. These interventions target both male and female mosquitoes throughout their lifespan, potentially providing synergistic population suppression when combined with blood-feeding-focused interventions like insecticide-treated nets.

Spatial repellents and volatile pyrethroid formulations offer personal protection by creating insecticide vapor barriers that deter mosquito host-seeking and blood-feeding without requiring physical contact, potentially circumventing contact-based resistance mechanisms. Transfluthrin-based emanators demonstrate protective efficacy in experimental hut trials [14], though questions regarding impact on community-level transmission and potential mosquito deflection to non-users remain incompletely resolved. Biological control approaches including *Bacillus thuringiensis israelensis* toxins, entomopathogenic fungi expressing insect-specific toxins, and *Wolbachia* endosymbionts that reduce vector competence represent environmentally sustainable alternatives with distinct modes of action. Genetically modified fungi expressing insecticidal or antipathogen molecules show remarkable efficacy in laboratory studies, though field implementation faces regulatory and public acceptance challenges. Integration of these diverse tools through coordinated deployment strategies informed by local entomological surveillance and resistance monitoring constitutes the foundation of integrated vector management, offering sustained effectiveness while managing resistance evolution.

CRISPR-Based Gene Drive Systems: Molecular Mechanisms and Laboratory Performance

CRISPR-Cas9 gene drive technology harnesses the bacterial adaptive immune system to create powerful molecular mechanisms that bias inheritance and propagate engineered genetic elements through populations [15]. The fundamental mechanism involves encoding the Cas9 endonuclease and guide RNAs within the genome at the target locus, creating a self-contained genetic element that, when inherited from one parent, copies itself onto the homologous chromosome during germline development. This process, termed homing, converts heterozygous individuals to homozygotes at rates approaching 100 percent, enabling super-Mendelian inheritance that drives introduced alleles to high frequencies even when conferring fitness costs. In *Anopheles gambiae*, multiple gene drive constructs targeting genes essential for female fertility, sexual development, or vectorial capacity have been developed and characterized in contained laboratory settings.

Population suppression gene drives employ several strategic approaches to reduce mosquito abundance below transmission thresholds. Female-specific sterility drives target genes essential for oogenesis or egg development, such as the doublesex gene which regulates sexual differentiation [16, 17]. Disruption of female doublesex function produces sterile females while preserving fertile males that propagate the drive, creating a self-limiting population crash over successive generations. Laboratory cage experiments demonstrate drive allele frequencies exceeding 95 percent within 10 generations, with complete population elimination achieved within 15 generations under optimal conditions. Sex-ratio distorting drives, which bias offspring production toward males by targeting female-determining genes or chromosome segregation machinery, offer alternative suppression mechanisms that have shown similar efficacy in experimental populations. Critical performance parameters include drive conversion efficiency, which determines spread kinetics, and fitness costs associated with drive insertion or target gene disruption, which influence invasion thresholds and ultimate drive frequencies.

Population modification drives incorporate antipathogen effector genes that render mosquitoes resistant to *Plasmodium* infection, aiming to replace susceptible populations with refractory populations incapable of transmitting malaria [18, 19]. Effector molecules including single-chain antibodies targeting *Plasmodium* surface proteins, antimicrobial peptides that disrupt parasite development, or synthetic peptides interfering with midgut invasion have demonstrated robust transmission-blocking activity in transgenic mosquitoes. Coupling these effectors to gene drives that target non-essential loci enables drive spread while maintaining mosquito fitness and ecological function. Molecular safeguards including split-drive designs, where Cas9 and guide RNAs are encoded at separate loci requiring both components for drive activity, provide containment mechanisms for laboratory testing. Daisy-chain drives, which employ sequential drive elements where each generation depends on the previous generation for propagation, offer temporally limited drive activity that could enable field testing with predictable termination. However, considerable uncertainty remains regarding drive performance under field conditions with diverse genetic backgrounds, environmental stresses, and complex ecological interactions.

Ecological Modeling, Resistance Evolution, and Implementation Challenges

Ecological modeling provides critical insights into gene drive population dynamics, spatial spread, resistance evolution, and ecosystem impacts that inform responsible development and deployment strategies [20]. Spatially explicit models incorporating realistic population structures, migration patterns, and environmental heterogeneity project that gene drives released in isolated populations could spread to continental scales within several years given modest dispersal rates. This rapid spatial propagation raises profound questions regarding containment feasibility, transboundary governance, and reversibility once drives establish in wild populations. Demographic stochasticity, particularly in small or fluctuating populations, introduces variance in drive trajectories with potential for stochastic loss even when invasion thresholds are exceeded, highlighting the importance of release strategies that ensure initial drive establishment.

The evolution of resistance alleles that evade or resist gene drives represents perhaps the most significant threat to long-term efficacy. Resistance can arise through multiple mechanisms including mutations in the guide RNA target sequence that prevent Cas9 recognition, mutations in the Cas9 recognition motif itself, or structural variants that delete or rearrange the target locus [21]. Population genetic models demonstrate that even low-frequency pre-existing resistance alleles or modest rates of de novo resistance generation can halt drive spread and restore wild-type populations. Resistance evolution occurs most rapidly when drives impose substantial fitness costs, target non-essential genes that tolerate loss-of-function mutations, or create strong selection for evasion. Mitigation strategies include multiplexing guide RNAs that target multiple sites within essential genes, requiring simultaneous mutations for functional resistance, and targeting haploinsufficient genes where heterozygous disruption confers deleterious effects that slow resistance spread. However, empirical validation of these strategies under realistic evolutionary scenarios remains limited.

Implementation challenges extend beyond technical performance to encompass regulatory frameworks, community engagement, environmental risk assessment, and equitable access considerations. No international consensus currently exists regarding governance structures for transboundary gene drive releases, creating regulatory uncertainty that delays responsible advancement. Contained field trial designs employing physical containment structures or isolated island populations offer opportunities for real-world efficacy and safety evaluation while minimizing ecological risks. Community engagement protocols developed through participatory processes in gene drive research programs emphasize transparency, local decision-making authority, and benefit-sharing arrangements that respect community values and priorities. Environmental risk assessments must evaluate potential impacts on non-target organisms, ecosystem functions including pollination and nutrient cycling, and possibilities for hybridization with related species. These multifaceted considerations necessitate carefully staged progression from laboratory studies through increasingly realistic contained tests before any potential environmental release.

Translational Pathways, Ethical Frameworks, and Policy Recommendations for Responsible Deployment

Translation of gene drive technologies from laboratory proof-of-concept to field deployment requires navigation of complex technical, regulatory, ethical, and sociopolitical landscapes that have no established precedents [22]. The phased testing approach proposed by gene drive research consortia envisions progression through multiple stages: laboratory efficacy and safety studies in standardized mosquito strains, large cage trials in semi-field enclosures that approximate natural environments, small-scale contained field trials in isolated populations, and potentially limited environmental releases with intensive monitoring if prior phases demonstrate acceptable safety and efficacy profiles. Each stage incorporates decision points where advancement depends on meeting predetermined performance criteria and addressing stakeholder concerns, enabling adaptive risk management that responds to emerging evidence.

Regulatory frameworks governing gene drive development and deployment remain incomplete, with most jurisdictions lacking specific legislation addressing self-propagating genetic technologies. Existing biosafety regulations developed for genetically modified organisms provide partial guidance but fail to adequately address unique characteristics including potential for widespread dispersal, multi-generational persistence, and difficulty of reversal. International bodies including the Convention on Biological Diversity have initiated policy discussions but have yet to establish binding agreements regarding testing standards, liability frameworks, or transboundary consultation requirements [23]. Regional harmonization of regulatory approaches across African nations affected by malaria transmission appears essential to enable coordinated evaluation and potential deployment, though achieving consensus across diverse political, economic, and social contexts presents formidable challenges.

Ethical frameworks must address multiple considerations including distributive justice in access to beneficial technologies, respect for community autonomy in decision-making about environmental releases, uncertainty regarding long-term consequences, and potential impacts on future generations. Target malaria and similar research programs have developed extensive community engagement protocols involving iterative consultations, capacity building for informed participation, and co-development of risk-benefit assessments that reflect local values and priorities. These processes reveal substantial heterogeneity in community perspectives, with some communities expressing enthusiasm about potential malaria reduction benefits while others voice concerns about ecological uncertainties, cultural acceptability, or governance adequacy. Indigenous rights frameworks emphasizing free, prior,

and informed consent may be particularly relevant where gene drives could affect territories of indigenous peoples. Alternative framings emphasize intergenerational equity, arguing that current generations bear responsibility to carefully evaluate technologies with potentially irreversible consequences for future populations.

Economic analyses examining cost-effectiveness compared to conventional interventions remain preliminary but suggest that gene drives, if effective, could provide substantial value given their self-sustaining nature and potential for transmission interruption rather than mere suppression [24]. However, development costs, field testing expenses, monitoring infrastructure requirements, and potential need for repeated releases complicate economic projections. Ensuring equitable access to gene drive benefits regardless of national economic capacity represents a critical ethical imperative, necessitating funding mechanisms that prevent technologies from remaining inaccessible to highest-burden populations. These considerations collectively demand thoughtful, inclusive, and precautionary approaches that balance innovation's promise against responsibilities to avoid harm and respect diverse values and interests.

CONCLUSION

Recent advances in vector control, particularly CRISPR-based gene drive technologies, represent transformative innovations with potential to fundamentally reshape malaria elimination strategies in sub-Saharan Africa. Declining efficacy of conventional insecticide-based interventions due to widespread resistance necessitates urgent diversification of control tools, with next-generation insecticides, biological control agents, and genetic technologies offering complementary approaches within integrated vector management frameworks. Gene drive systems employing population suppression or modification strategies have demonstrated remarkable efficacy in laboratory settings, achieving super-Mendelian inheritance rates and population transformation within timescales unattainable through conventional means. However, substantial uncertainties persist regarding field performance under realistic ecological conditions, evolution of resistance alleles that could undermine drive efficacy, potential non-target ecological impacts, and sociopolitical acceptability across diverse stakeholder communities. Current evidence derives predominantly from laboratory studies and mathematical models, with minimal empirical data from field-relevant contexts, limiting confidence in projections and highlighting critical knowledge gaps. Regulatory frameworks, governance structures, and ethical guidelines remain incomplete, though active development through international consultations and stakeholder engagement processes is advancing responsible oversight capacity. The path forward requires carefully staged progression through increasingly realistic testing environments, robust monitoring systems capable of detecting unanticipated consequences, adaptive management frameworks that enable course corrections, and inclusive decision-making processes that respect community autonomy while addressing transboundary implications. Gene drives offer genuine hope for sustainable malaria elimination, but realizing this potential demands patience, precaution, and unwavering commitment to equity and environmental stewardship. International regulatory bodies should establish harmonized containment standards and risk assessment protocols for gene drive field trials, coupled with sustainable funding mechanisms for capacity building in African research institutions to ensure equitable participation in technology development and oversight.

REFERENCES

1. Obeagu, E.I., Alum, E.U., Ugwu, O.P.C.: Hepcidin's Antimalarial Arsenal: Safeguarding the Host. *Newport International Journal of Public Health And Pharmacy.* 4, 1–8 (2023). <https://doi.org/10.59298/NIJPP/2023/10.1.1100>
2. Tufail, T., Agu, P.C., Akinloye, D.I., Obaroh, I.O.: Malaria pervasiveness in Sub-Saharan Africa: Overcoming the scuffle. *Medicine.* 103, e40241 (2024). <https://doi.org/10.1097/MD.00000000000040241>
3. Fernandez Montoya, L.: Vector control during a pilot malaria elimination project in southern Mozambique: gaps and future opportunities. *Tesis Doctorals - Facultat - Medicina i Ciències de la Salut.* (2022)
4. Ogbonnia Egwu, C., Aloke, C., Chukwu, J., Agwu, A., Alum, E.U., Tsamesidis, I., E Offor, C., Ajuka Obasi, N., Aja, P.M.: A world free of malaria: It is time for Africa to actively champion and take leadership of elimination and eradication strategies. *Afr Health Sci.* 22, 627–640 (2022). <https://doi.org/10.4314/ahs.v22i4.68>
5. Garrood, W.T., Cuber, P., Willis, K., Bernardini, F., Page, N.M., Haghhighat-Khah, R.E.: Driving down malaria transmission with engineered gene drives. *Front Genet.* 13, 891218 (2022). <https://doi.org/10.3389/FGENE.2022.891218/FULL>
6. Kandul, N.P., Liu, J., Bennett, J.B., Marshall, J.M., Akbari, O.S.: A confinable home-and-rescue gene drive for population modification. *Elife.* 10, e65939 (2021). <https://doi.org/10.7554/ELIFE.65939>
7. Alum, E. U. (2024). Phytochemicals in Malaria Treatment: Mechanisms of Action and Clinical Efficacy. *KIU J. Health Sci.*, 4(2):71–84. <https://doi.org/10.59568/KJHS-2024-4-2-06>.
8. Perugini, E., Pichler, V., Guelbeogo, W.M., Micocci, M., Poggi, C., Manzi, S., Ranson, H., della Torre, A., Mancini, E., Pombi, M.: Longitudinal survey of insecticide resistance in a village of central region of Burkina Faso reveals co-occurrence of 1014F, 1014S and 402L mutations in *Anopheles coluzzii* and *Anopheles arabiensis*. *Malaria Journal* 2024 23:1. 23, 1–10 (2024). <https://doi.org/10.1186/S12936-024-05069-9>

9. Chen, A., Zhang, H., Shan, T., Shi, X., Gao, X.: The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon/cotton aphid, *Aphis gossypii* Glover. *Pestic Biochem Physiol.* 167, 104601 (2020). <https://doi.org/10.1016/J.PESTBP.2020.104601>
10. Gleave, K., Lissenden, N., Chaplin, M., Choi, L., Ranson, H.: Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. *Cochrane Database Syst Rev.* 2021, CD012776 (2021). <https://doi.org/10.1002/14651858.CD012776.PUB3>
11. Al Naggar, Y., Fahmy, N.M., Alkhaibari, A.M., Al-Akeel, R.K., Alharbi, H.M., Mohamed, A., Eleftherianos, I., El-Seedi, H.R., Giesy, J.P., Alharbi, H.A.: Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control. *Toxics* 2025, Vol. 13, Page 681. 13, 681 (2025). <https://doi.org/10.3390/TOXICS13080681>
12. Sih, C., Protopopoff, N., Koffi, A.A., Ahoua Alou, L.P., Dangbenon, E., Messenger, L.A., Kulkarni, M.A., Zoh, M.G., Camara, S., Assi, S.B., N'Guessan, R., Cook, J.: Efficacy of chlorfenapyr-pyrethroid and piperonyl butoxide-pyrethroid long-lasting insecticidal nets (LLINs) compared to pyrethroid-only LLINs for malaria control in Côte d'Ivoire: a three group, cluster randomised trial. *Trials* 2024 25:1. 25, 1–17 (2024). <https://doi.org/10.1186/S13063-024-07969-2>
13. Ahmed, T.H., Saunders, T.R., Mullins, D., Rahman, M.Z., Zhu, J.: The juvenile hormone receptor Methoprene-tolerant is involved in the sterilizing effect of pyriproxyfen on adult *Aedes aegypti* mosquitoes. *bioRxiv*. 2020.05.31.126508 (2020). <https://doi.org/10.1101/2020.05.31.126508>
14. Maasayi, M.S., Swai, J.K., Muganga, J.B., Moore, J., Stevenson, J.C., Coleman, M., Lobo, N.F., Moore, S.J., Tambwe, M.M.: The BiteBarrier transfluthrin emanator demonstrates significant protection against susceptible and resistant malaria and arbovirus vectors in semi-field trials in Tanzania. *PLoS One.* 20, e0320624 (2025). <https://doi.org/10.1371/JOURNAL.PONE.0320624>
15. Nateghi Rostami, M.: CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections. *Parasite Immunol.* 42, e12762 (2020). <https://doi.org/10.1111/PIM.12762>;WGROU:STRING:PUBLICATI
16. Afkhami, M.: Neurobiology of egg-laying behavior in *Drosophila*: neural control of the female reproductive system. *J Neurogenet.* 38, 47–61 (2024). <https://doi.org/10.1080/01677063.2024.2396352>;ISSUE:ISSUE:DOI
17. Yadav, A.K., Butler, C., Yamamoto, A., Patil, A.A., Lloyd, A.L., Scott, M.J.: CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest *Drosophila suzukii*. *Proc Natl Acad Sci U S A.* 120, e2301525120 (2023). <https://doi.org/10.1073/PNAS.2301525120>;WEBSITE:WEBSITE:PNAS-SITE;ISSUE:ISSUE:DOI
18. Nikiema, S., Soulama, I., Ampofo, G.D., Nikiema, M., Zouré, A.A., Sombié, S., Sawadogo, S., Ouedraogo, N., Sermé, S.S., Sawadogo, H., Ily, R., Tibiri, G.Y.N., Zouré, D.O.A., Yanogo, N.J., Kaboré, F.C.A., Tchekounou, C., Zida, A., Tao, I., Ouedraogo, O., Zongo, D., Djigma, F.W., Tiono, A.B., Sirima, S.B., Badolo, A., Simporé, J.: Influence of genetic factors of humans, mosquitoes and parasites, on the evolution of *Plasmodium falciparum* infections, malaria transmission and genetic control methods: a review of the literature. *BMC Medical Genomics* 2025 18:1. 18, 1–15 (2025). <https://doi.org/10.1186/S12920-025-02165-W>
19. Bottino-Rojas, V., James, A.A.: Population Modification Using Gene Drive for Reduction of Malaria Transmission. *Transgenic Insects.* 243–258 (2022). <https://doi.org/10.1079/9781800621176.0011>
20. Rode, N.O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V., Débarre, F.: Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. *Conservation Genetics* 2019 20:4. 20, 671–690 (2019). <https://doi.org/10.1007/S10592-019-01165-5>
21. Allemailem, K.S.: Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. *Int J Nanomedicine.* 19, 1125–1143 (2024). <https://doi.org/10.2147/IJNS.S453566>
22. Gene drive technologies: navigating the ethical landscape. (2022). <https://doi.org/10.33540/1295>
23. Fajardo del Castillo, T.: Principles and Approaches in the Convention on Biological Diversity and Other Biodiversity-Related Conventions in the Post-2020 Scenario. *Biological Diversity and International Law: Challenges for the Post 2020 Scenario.* 15–34 (2021). https://doi.org/10.1007/978-3-030-72961-5_2
24. Mezieobi, K.C., Alum, E.U., Ugwu, O.P.C., Uti, D.E., Alum, B.N., Egba, S.I., Ewah, C.M. Economic burden of malaria on developing countries: A mini review. *Parasite Epidemiology and Control.* 30 (2025), e00435. <https://doi.org/10.1016/j.parepi.2025.e00435>

CITE AS: Nalongo Bina K. (2026). Advances in Vector Control and Gene Drive Technologies for Sustainable Malaria Elimination in Sub-Saharan Africa. IDOSR JOURNAL OF BIOCHEMISTRY, BIOTECHNOLOGY AND ALLIED FIELDS 11(1):77-83.
<https://doi.org/10.59298/IDOSR/JBAF/2026/1027783>