Impact of Culinary Techniques on Nutritional Profiling: Unraveling the Transformation of Proteins and Vegetables in Cooking

Adumu Michael James
Department of Biochemistry, Kampala International University Uganda

ABSTRACT
This paper explores the impact of cooking technique and vegetable nutritional components. As a crucial provider of nutrients, food goes through profound changes when cooked, hence its effect on macro- and micro-nutrients. Protein denaturation, which may lead to the breakdown of the tertiary structure resulted from the effect of heat, acid, alkali, or ultraviolet radiation, is a process that disrupts the original characteristics of proteins. Proteins basically remain more secure than vitamins while cooking, but they risk denaturation after overcooking or exposure to high heat. Although micronutrients like vitamins and minerals needed for growth are stable in their content and behavior, they can change their content and behavior during cooking process as they cannot withstand heat. The paper underlines the multiple impacts of cooking techniques on vegetables by pointing out that some techniques of heat application might result in inferior nutritional quality. Bioactive compounds that are in vegetables, undergo changes in the physical attributes, the sensory properties and bioactive content based on the techniques such as boiling, steaming or microwaving. Besides, during food preparation such as washing, peeling and cutting almost everything like flavor, texture or final nutritional values is already determined. The cooking method chosen in a wide range including microwave, pressure cooker, open pan or steaming has a great impact on the nutrient composition. Bacterial contamination in eggs, which is a health safety concern that can cause nutrients losing and even harm consumer health, stresses the need for cooking to preserve nutrients and protect consumers. The modern consumer who cares about the nutritional values and benefits of home cooked meals must be aware of the magnitude of method of cooking on the content of nutrients. Being a fact that more and more consumers after minimally processed and additive free snacks and nutrition information about cooking method is critical. The study concludes the study by suggesting that additional research is needed so as to develop the guidelines for the best cooking methods that promote nutrient conservation, safety, and palatability.

Keywords: Cooking technologies, Nutrient value, Protein denaturation, Vitamins and minerals, Vegetables processing, Food processing, and Consumers trends.

INTRODUCTION
Since it is important for organism’s growth, food is regarded as a complex blend of macro- and micro-nutrients. Within this group, proteins occupy an important niche in the performance of different physiological functions. Nevertheless, cooking modes change the structure of proteins, and so there is denaturation where the three-dimensional structures are transformed, with this way of inactivating the physiological activities of proteins.\cite{1}; \cite{2}. Denaturation, resulting from heat, acid, alkali, or UV radiation, induce molecular structure changes of proteins thus making them lose their original function (Merriam-Webster dictionary). Even though proteins are almost resistant to the cooking process, which is why they remain stable during cooking, overcooking or heat exposure can cause their denaturation \cite{3}.

The benefits from the preparation processes are not only limited to macronutrients, but also to micronutrients, e.g. vitamins and minerals, necessary for the growth and development of organisms \cite{4}; \cite{5}. Moreover, plant foods also give us phytoneutrients which can easily be destroyed by the heat applied during the cooking. Vegetables, in particular, may lessen in nutritional value when heated. This, further, creates doubt regarding the

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
possible ways of vegetable consumption with the minimum loss of nutrients. Protein Denaturation and Cooking: Proteins in food undergo denaturation during cooking also with a consequent change of their structure and physiological activities \[1\]. Heating, acid, alkali and UV radiation are the processes that affect the protein’s molecular structure (Merriam-Webster). Enzymatically denatured proteins lose their biological (medpharm.net) activity but retain their nutritional content (encyclopedia.com). As compared to the structural fibrous proteins, the globular functional proteins are more unstable, readily denatured by heat and excess pH excise \[2\]. Effect of Cooking on Micro and Macro-Nutrients: Cooking alters the number, kind and functions of the micro and macronutrients. Nevertheless, long cooking can lead to vitamin C content lost by more than 50% \[6\]. Cooking methods, time and temperature are the most critical factors that determine the amount of nutrient available \[4\]. In this process of long cooking or cooking at high temperatures, proteins may be easily denatured and become harmful \[5\]. The method of cooking selected (microwave, pressure-cooker, open pan, or steaming) also affects nutrient preservation.

Health Safety Concerns
Cooking takes beyond consideration on nutrition preservation and safety. E.g. eggs may contain protein such as conalbumin and avidin that can block the iron and biotin available in the body. Through cooking, denaturation of protein occurs, which means that the iron and biotin become available \[8\]. Nevertheless, the eggshell lining is porous, hence the egg can be contaminated with Salmonella and therefore the egg is not safe for eating raw (U.S. Center for Disease Control and Prevention). Vegetables: According to the bioactive components properties, vegetables are processed mainly based on which type is preferred as a food and which type is suitable to be processed. Different cooking processes like boiling, steaming, and microwaving, can transform their appearance, flavor, and bioactivities \[9\]; \[10\]. Among thermal treatments, heating in various forms can produce both good and bad outcomes depending on the type and quality of vegetables as well as the cooking method \[11\]; \[12\].

Preparation and Texture Modification
Food preparation including washing, peeling and cutting affects color, taste, texture, and nutritional value of a product \[13\]. Texture changes bring changes in cell wall polymers due to enzymatic and non-enzymatic reactions \[14\]. Myrosinase and Allinase, enzymes released during the slicing of vegetables such as broccoli and onions, are accountable for their flavor and pungent characteristics \[15\]. Besides chopping the bioactive components of the food, bioavailability can also change \[16\]. Cooking Patterns and Nutrient Content: The way of cooking vegetables varies and it affects the nutrient content. Steaming seems to be The most effective approach to preserving the nutritional value of broccoli involves optimizing the levels of TAC, glucosinolates, carotenoids, sulforaphane, and folate, as evidenced by an increase in these components \[11\]. Among various cooking methods, Sous vide has been identified as the most conducive for retaining maximum folate levels in potatoes \[12\]. Onions exhibit higher flavonol concentrations when sautéed or oven-baked, while boiling them leads to decreased levels of non-flavonols \[17\]. The cooking process, soaking, and starch digestibility can influence the performance of peas and beans differently \[18\], \[19\]. Cooking beans such as fava, lentils, and chickpeas results in a reduction in their vitamin content \[20\].

Consumer Trends and Relevance
Learning the ways in which different food preparation methods influence the nutritious value of foods is vital for today’s consumer. As a survey on the U.S. food habits shows, the vast majority of people prefer to cook food at home; therefore, understanding the consequences of various ways of cooking is of great importance \[21\]. The development of a specific demand for minimally processed foods without additives has led to the need for education on food preparation methods \[21\]. The preparation of vegetables through cooking controls their nutritive value to a large extent by causing the loss of both macro and micronutrients. Protein denaturation, variations in cooking methods, as well as food preparation processes are all of the utmost importance when it comes to determining what nutrients remain in cooked vegetables. Knowledge of these factors is the key for the consumers who aspire to gain maximal health benefits from their diet. However, future studies can also help in developing the food guidelines that ensure proper cooking methods to help in the preservation of nutritional benefits of vegetables, food safety and palatability.

CONCLUSION
This research, by highlighting the complex interdependence between cooking techniques and
macronutrients alterations, and cooking style altogether determine the final nutritional value of cooked vegetables. Data give the key facts on maintaining the nutritional value and the possible nutrient loss during heat treatments. Trends in consumerism are showing an increased preference for home-cooked meals thereby making it imperative to have some understanding of the effects of different methods of preparing and cooking food. The purpose of study is to underline the necessity of reduction of nutrients loss during this process, and explicitly in terms of safety of food and health risks associated with bacterial contamination. Along with the growing demand for naturally minimally processed and additive-free foods, the understanding of the cooking methods impact on nutritional quality is key. Next, it will be critical to conduct additional research to develop guidelines for appropriate cooking methods that will guide the public. Guidelines should not only allow for maximization of the retention of nutrients but also take into consideration food safety issues and palatability.

REFERENCES


This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.