©IDOSR PUBLICATIONS

International Digital Organization for Scientific Research ISSN: 2579-0765 IDOSR JOURNAL OF CURRENT ISSUES IN SOCIAL SCIENCES 7(1): 46-59, 2021.

The impact of money supply on economic growth in Nigeria, 1986-2019

Opata Nneamaka Mary Blessing and A.C Obasikene

Department of Banking and Finance, Enugu State University of Science and Technology.

ABSTRACT

This study examined the impact of money supply on economic growth in Nigeria, 1986-2019. The objectives were to; to ascertain the impact of broad money supply on economic growth in Nigeria, to determine the impact of ratio of private sector credit to GDP on economic growth in Nigeria. The study used ex-post facto design as it was relied on already recorded events, and researchers do not have control over the relevant dependent and independent variables they are studying with view to manipulating them. The analytical tools used were unit root test, descriptive statistics and ordinary least square. The study found out that broad money supply and ratio of Private sector credit to GDP has positive and significant impact on economic growth in Nigeria. The study recommended that The CBN should be made more effective in its monetary management by making all financial markets organized so as to accentuate the effects of monetary policy variables like Broad money supply. This promotes real GDP in Nigeria. The government should encourage monetary authorities like the Central Bank of Nigeria to build a conducive and enabling environment for friendly interest rates so that prospective investors can increase their investment and raise the nation's production capacity. This can be achieved through low unremunerated reserve requirements and adequate physical and financial infrastructure to remove the impediments that lead to the gap between the savings and lending rate. This is because the interest rate is the stimulating factor in savings and investment decisions in the economy. Attempts should be made by the government to improve on its infrastructure in order to reduce cost of production and increase exportation so as to achieve the objective of naira devaluation. This adds to the country's national income and in general promotes the real GDP.

Keywords: Money, Economic growth, CBN and GDP

INTRODUCTION

Economic growth provides crucial information to government, investors, communities international organizations (both governmental and nongovernmental) [1,2]. This information includes the size of the economy, its rate of growth, GDP per capita, etc. That is why scholars and researchers have embarked on tracing the relationship between economic growth and the factors that fuel its success or otherwise .One of these factors is money supply [3,4]. The relationship between money supply and economic growth has a theoretical backing. According to Keynesian Theory of Growth in the supply of money tend to influence the equilibrium value of output and employment because an expansion in money supply will raise the price of bonds and reduce the rate of interest. increase the level of investment and

output [5]. It should be remembered that in classical theory of inflation the quantity theory of money explain the influence of money supply to be that of raising price or lowering it depending on whether the supply of money is increased or decreased. This shows that if money growth is equal to increases in real GDP, and then there will be no inflation [6]. Other scholars have also pulled out their views concerning how money supply is related to economic growth. [7] is in the view that lowering money stock by increasing interest rate would lower Gross Domestic Product (GDP). [8], argued that variations in the quantity of money supply is the most important determinant of economic growth and nations that sacrificed more time in studying the behavior of aggregate money supply rarely experience poor economic

performance and claimed that this is also the views of some economists. Steve and Domingo contended that there may not be positive economic growth without an appropriate financial condition. [9] is in theview that money supply more or less influences Economic growth.

Economists have disagreement on the effect of money supply on economic growth [. While some believe that the most important determinant of economic growth is variation in the quantity of money and that countries that devote more time to studying the behavior of aggregate money supply rarely experience their variation in economic activities. Others are suspicious about the role of money or gross national income [10]. The implication of the stability of the relationship between money and economic growth will show effectiveness of monetary policy following the conventional Hicksian IS-LM analysis [11]. Moreover, Monetary policy deliberate measure bv through government the monetary authority, Central Bank of Nigeria (CBN) by the use of interest rate, direction of credits, supply of money etc. to regulate the level of activities in the economy in order to enhance price stability, economic growth and even investment employment. However, the directions in monetary policy and particularly the emphasis on more reluctant and effective instruments came in the deregulation of money market beginning from 1987 [12]. Monetary policy from then on wards laid greater emphasis on preventing money from becoming a major source of disturbance in the economy. Excessive monetary expansion stabilizing security among other instruments. Monetary aggregates have at

Opata and Obasikene

times been advocated as guide to monetary policy on the ground that they may have a fairly stable relationship with the economic growth and can be controlled to a reasonable extent by the central Bank, either through control over the supply of balances at the federal reserve of the federal fund rate. An increase in the federal fund rate (and short-term interest rate. example, will reduce the attractiveness of holding money balances relative to new yielding higher money market instruments and thereby reduce the amount of money demanded and slow growth of the money stock. There are a few measures of the money stock ranging from the transactions dominated M1 to the broader M2 and M3 measures, which include other liquid balances and these aggregates have different behaviors [13]. In discussing the concept of money supply and its impacts, two other issues often come to our mind, which is the state inflationary pressure and unemployment rate. According to the monetarist, an increase in money supply in an economy causes an increase in general price level of commodities which brings about inflationary in the country [14],[15],[16],[17],[18]. Also related to the issue of inflation is the issue of unemployment which is the primary goal of any economy so as to produce as many goods and services as possible while maintaining an acceptable level of price stability, but this major goal will be very difficult to attain at high inflation rate and price instabilities due to excess money supply in the economy. This research work therefore, would review the technicalities involved in the control of monev supply in Nigeria.

Statement of the Problem

Study of this nature is always not comparable by the existence of certain problem. The major problem that trigged off this work is the recurrence of general price instability, persistent inflationary pressures and unemployment in the economy, in spite of the excess of

monetary policy measures adopted and applied over the years. There is also this problem of general feeling that a continuous annual rate of money increases will adversely increase the rate of price level which will directly lead to inflation, which may deny the intended

effects of use of monetary policy measure to influence economic growth thus, requiring a policy response. Recently, these inflationary pressures have succeeded in bringing about devaluation in Nigeria's currency value as a result of

From the above issue, this research work will address the questions: What is the impact of money supply on economic growth in Nigeria.

expansionary measures of money supply.

Opata and Obasikene

Objectives of the Study

The broad objective of the study is to examine the impact of broad money supply on economic growth in Nigeria, 1986 - 2019. Specifically, the study is set to:

1. To ascertain the impact of broad money supply on economic growth in Nigeria.

2. To determine the impact of ratio of private sector credit to GDP on economic growth in Nigeria.

Research Questions

From the following objective of the study, the following research questions are use for the study:

1. To What the degrees have broad money supply impacted on economic growth in Nigeria?

2. To what extent does ratio of private sector credit impact to GDP on economic growth in Nigeria?

Statement of Hypotheses

These hypotheses are meant to guide the study:

1. Broad money supply does not have positive and significant impact on economic growth in Nigeria.

2. The ratio of Private sector credit does not have positive and significant impact on economic growth in Nigeria.

Significance of the Study

The research is significant to the following stakeholders: Policy Makers: The impact of financial deepening on economic growth is important as this will inform and update Nigeria policy makers to give priority to all policies o financial deepening and find ways through which financial deepening can be made more effective and efficient. This study will help formulate policies capable of enhancing the development of the

financial sector. Investors: The result of the study would be of benefit to investment analysts and investors in examining the effectiveness of financial deepening and thus evaluating the option available for accessing long-term, shortterm, non-debt financial capital which enables investors to avoid over reliance on debt financing.

METHODOLOGY Research Design

The researcher adopted *ex-post facto* design. It examines past occurrences in order to understand a current state. Although this type of design involves both a dependent variable and

an independent variable and the researcher cannot manipulate the latter. The choice of the *ex-post facto* design is because the research relied on already recorded events or historic data.

This study examined the impact of financial deepening on economic growth in Nigeria. The data used for the study is secondary in nature. It is adopted for this study as it helps to improve the understanding of the problem under study. Secondary data such as market

Nature and Sources of Data mpact of capitalization, credit to private sector, broad money supply, economic volatility and Gross Domestic Product were collected from the Central Bank of Nigeria (CBN) Statistical Bulletin within the time frame of 1986-2019. The estimation technique was based on the nature of data

used for the study. The data set is used because it elicits the requisite information needed to achieve the objectives of the Opata and Obasikene study as well as attend to the problem generated in the study.

Model Specification

The model of the study is based on the classical regression model of Brooks (2014). The model is shown as follows;

GDP =
$$F(M_2, RCPSGDP)$$
(1)

Where:

GDP = Gross Domestic

Product

 M_2 = Broad Money Supply

RCPSGDP = Ratio of Credit to the Private Sector to GDP

In a regression form, it will become:

GDP_t =
$$\beta$$
0 + β ₁M_{2t} + β ₂ RCPSGDP_t + μ (2)

 β o = Constant Term

 β_1 = Coefficient of Broad Money Supply

 β_2^1 = Coefficient of Ratio of Credit to the

Private Sector to GDP

= Error Term

Description of Model Variables Broad Money Supply

Money supply is a basic macroeconomic element that influences economic growth in an economy by ensuring effective running of economic activities in both public and private sectors through liquidity availability. It is defined as the total amount of monetary asset available in an economy at a specific time.

Ratio of Private Sector Credit to GDP

This refers to financial resources provided to the private sector by financial corporations, through loans, purchases of RCPSGDP: = CPS

GDP

non equity securities, and trade credits and other accounts receivable, that establish a claim for repayment.

Gross Domestic Product

Gross domestic product (GDP) is the total monetary or market value of all the finished goods and services produced within a country's borders in a specific time period. As a broad measure of overall domestic production, it functions as a comprehensive scorecard of a given country's economic health.

Method of Data Analysis

The study is set to adopt unit root test, descriptive statistics, autocorrelation test heteroskeidasticity preliminary tests. Unit root test was used to measure the stationarity properties of the variables, descriptive statistics was used to ascertain the individual characteristics of the variables. autocorrelation test was used to determine the presence/absence autocorrelation in the regression model while heteroskeidasticity test measures

whether the variance of a regression model is constant (that is, homoskeidastic). Bound test is used to identify whether a long run effect exists exists between the independent variables and the dependent variable under study. On the other hand, ordinary least square is used as the analytical technique to ascertain the impact of financial deepening indicators on economic growth of Nigeria.

DATA PRESENTATION, ANALYSIS, DISCUSSION OF FINDINGS.

Data Presentation

Data for the study, sourced from the annual statistical bulletin were presented, tested and analyzed. The data collected were organized and used for testing the hypotheses. From the analysis and results

generated, deductions and logical conclusions were obtained.

The abbreviations used to signify the variables of study in all the tables are shown in the appendix.

Table 1: showing the data for the study

1986 34.89 0.49819 1151086 1987 44.21 0.51036 1119063 1988 48.11 0.49032 1216464 1989 50.76 0.39051 1461131 1990 45.9 0.44339 1797376 1991 52.86 0.48811 1812277 1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621<			e 1: showing the data fo		
1987 44.21 0.51036 1119063 1988 48.11 0.49032 1216464 1989 50.76 0.39051 1461131 1990 45.9 0.44339 1797376 1991 52.86 0.48811 1812277 1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 4823 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295	YR	M2	RCPSGDP	GDP	
1988 48.11 0.49032 1216464 1989 50.76 0.39051 1461131 1990 45.9 0.44339 1797376 1991 52.86 0.48811 1812277 1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690	1986	34.89	0.49819	1151086	
1989 50.76 0.39051 1461131 1990 45.9 0.44339 1797376 1991 52.86 0.48811 1812277 1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 <	1987	44.21	0.51036	1119063	
1990 45.9 0.44339 1797376 1991 52.86 0.48811 1812277 1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 <	1988	48.11	0.49032	1216464	
1991 52.86 0.48811 1812277 1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807	1989	50.76	0.39051	1461131	
1992 75.4 0.50563 1627060 1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117	1990	45.9	0.44339	1797376	
1993 111.11 0.64182 1698859 1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 233017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 <th>1991</th> <th>52.86</th> <th>0.48811</th> <th>1812277</th> <th></th>	1991	52.86	0.48811	1812277	
1994 165.34 0.6248 1877736 1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822	1992	75.4	0.50563	1627060	
1995 230.29 0.50072 2424108 1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578	1993	111.11	0.64182	1698859	
1996 289.09 2.74132 48233 1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00477 3486691	1994	165.34	0.6248	1877736	
1997 345.85 0.5179 1289552 1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00477 3486691 2015 17679.29 0.00477 3486691<	1995	230.29	0.50072	2424108	
1998 413.28 0.52434 1577290 1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+	1996	289.09	2.74132	48233	
1999 488.15 0.49686 1802008 2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.3	1997	345.85	0.5179	1289552	
2000 628.95 0.54165 2079862 2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429	1998	413.28	0.52434	1577290	
2001 878.46 0.46155 3423819 2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	1999	488.15	0.49686	1802008	
2002 1269.32 0.79263 2333017 2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2000	628.95	0.54165	2079862	
2003 1505.96 0.73509 2983621 2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2001	878.46	0.46155	3423819	
2004 1952.92 6.54853 3439915 2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2002	1269.32	0.79263	2333017	
2005 2131.82 0.54644 3690295 2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2003	1505.96	0.73509	2983621	
2006 2637.91 0.30277 1244030 2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2004	1952.92	6.54853	3439915	
2007 3797.91 0.00663 1330771 2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2005	2131.82	0.54644	3690295	
2008 5127.4 9.7756 1784490 2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2006	2637.91	0.30277	1244030	
2009 8008.2 0.60613 2171807 2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2007	3797.91	0.00663	1330771	
2010 9411.11 0.14274 2575117 2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2008	5127.4	9.7756	1784490	
2011 11034.94 0.094913 2558562 2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2009	8008.2	0.60613	2171807	
2012 12172.49 0.05736 2399822 2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2010	9411.11	0.14274	2575117	
2013 13895.39 0.08211 2490578 2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2011	11034.94	0.094913	2558562	
2014 15160.29 0.00241 3143338 2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2012	12172.49	0.05736	2399822	
2015 17679.29 0.00477 3486691 2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2013	13895.39	0.08211	2490578	
2016 18901.3 8.68707 2.73E+08 2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2014	15160.29	0.00241	3143338	
2017 21827.33 0.96605 3.35E+08 2018 25072.11 0.77429 4.12E+08	2015	17679.29	0.00477	3486691	
2018 25072.11 0.77429 4.12E+08	2016	18901.3	8.68707	2.73E+08	
	2017	21827.33	0.96605	3.35E+08	
2019 2.96E+04 0.54401 6.44E+08	2018	25072.11	0.77429	4.12E+08	
	2019	2.96E+04	0.54401	6.44E+08	

Source: CBN Statistical Bulletin

NB:

M = Broad Money Supply

RCPSGDP = Ratio of Credit to the Private Sector to GDP

GDP = Gross Domestic Product

Table 1 showed the data comprising of broad money supply, ratio of credit to the private sector to GDP and gross domestic product.

Variables	Skewness	Kurtosis	Jarque-Bera Stat.	Probability	Obs.
M ₂	-1.455006	3.443851	18.05244	0.000120	35
RCPSGDP	1.012772	3.194700	8.626536	0.013390	35
GDP	-1.956413	5.366624	43.56483	0.000000	35

Source: Author's Computation from Eviews 9.0 Table 2 contains the description of the variables using normality test which comprises of Skewedness, Kurtosis and Jarque – Bera Statistics. Jarque – Bera (JB) tool Statistics was used to determine whether or not fluctuations in financial deepening follow the normal probability distribution. The (JB) tool of normality is

a large sample or asymptotic tool that computes kurtosis and skewedness measures. The researcher therefore examined the sample mean, standard deviation, skewedness, kurtosis and Jarque - Bera statistics as well as the P - value.

Table 3: Descriptive Statistics Output

	rable 3. Descriptive statistics output						
	M2	RCPSGDP	EV	GDP			
Mean	13.02348	13.44680	14.36518	13.42102			
Median	15.47941	12.59756	16.36428	15.41725			
Maximum	19.36248	18.79936	19.97593	19.57493			
Minimum	0.038315	10.88215	0.050657	0.247198			
Std. Dev.	6.123764	2.106340	6.214555	4.965419			
Skewness	-1.455006	1.012772	-1.660496	-1.956413			
Kurtosis	3.443851	3.194700	4.080973	5.366624			
Jarque-Bera	18.05244	8.626536	24.90323	43.56483			
Probability	0.000120	0.013390	0.000004	0.000000			
ŕ							
Sum	651.1740	672.3402	703.8941	671.0511			
Sum Sq. Dev.	1837.524	217.3968	1853.793	1208.114			
-							
Observations	35	35	35	35			

From the result in table 3, descriptive statistics indicates that from 1986 to 2019 all the variables show an average positive mean value from 14.36518 to 10.5717077. The standard deviation shows that the highest standard deviation of (6.123764) is recorded by money supply while the least standard deviation of (2.106340) is recorded by ratio of credit to private sector to GDP. The skewedness statistics from the table

reviewed that one of the variables is positively skewed while two variables are skewed negatively. The kurtosis coefficient shows that all the variables are leptokurtic as their kurtosis value are greater than three (3). The probability of Jarque-Bera tool of normality for the variables indicate that all the variables have values less than 5% level of significance showing that all the variables are normally distributed.

Unit Root Test

This test tries to examine the property of the variables. It is used to check for the presence of a unit root i.e. whether the variables are stationary. Economic variables are generally non – stationary and they are a random process. Linear combination of non - stationary series in general is a non - stationary series and closely associated with economic theory. Because economic theory guarantees stagnation of combination of economic variables, in this study Dickey Fuller's

generalize Test for investigation of stationary variables is used. In order to assess the time series properties of the data, unit root test was conducted. As Engle and Granger (1987) argued, if individual time series data are non – stationary, their linear combinations could be stationary if the variables were integrated of the same order. The assumption is stated as follows: if the absolute value of the Augmented Dickey Fuller (ADF) test is greater than the LLC = Levin, Lin and Chu Test

IPS = Im, Pesaran and Shin W - Stat

ADF FISHER = Augmented Dickey Fuller Fisher Chi - Square Test

Opata and Obasikene critical value either at 1%, 5% or 10% level of significance at order zero, one or two, it shows that the variable under considerations is stationary otherwise it is not. The results of the Augmented Dickey Fuller (ADF) test shows that all variables are stationary at level or integrated of order one at 5% level of significance. The ADF is carried out using E-views software package and the results from the test are tabulated below:

PP FISHER = Philip Peron Fisher Chi - Square Test

Table 4 showed that all the variables are stationary at level or integrated of order one.

Variable	LLC		ADF - FISHE	ER	PP - FISHER	
	Test Stat.	Order of integration	Test Stat.	Order of integration	Test Stat.	Order of integration
$\mathbf{M}_{_{2}}$	-4.75 (0.0000 < 0.05)	I(1)	33.41 (0.0002< 0.05)	I(I)	71.18 (0.0000 < 0.05)	I(I)
RCPSGDP	-10.01 (0.0000< 0.05)	I(1)	22.44 (0.0130<0. 05)	I(1)	52.60 (0.0000< 0.05)	I(1)
GDP	-5.31 (0.0000 < 0.05)	I(I)	31.78 (0.0004< 0.05)	I(I)	65.87 (0.0000 < 0.05)	I(I)

Source: Author's Compilation from Eviews 9

Test of Hypotheses

The test of hypothesis was carried out as follows:

Step 1: Re-statement of the hypothesis in the null and alternate forms

Step 2: Statement of decision criteria

Step 3: Presentation of test result

Step 4: Decision

Test of Hypothesis one

Step 1: Restatement of the hypothesis.

Broad money supply does not have positive and significantly impact on economic growth in Nigeria.

Step 2: Statement of Decision Criteria Reject H₀ if the t-statistics is >2.0 and the probability of the t-statistics is <0.05.

Step 3: Presentation of test result

Ta	ble	5:	Test	of	Hy	po	thes	sis	One
----	-----	----	------	----	----	----	------	-----	-----

s One						
:43						
Sample: 1986 2019 Periods included: 35						
Coefficient	Std. Error	t-Statistic	Prob.			
60238430	96535343	0.624004	0.5357			
1161182.	28176794	4.041211	0.0073			
0.897065	Mean depend	lent var	1.23E+08			
0.775083	S.D. depende	nt var	5.04E+08			
5.07E+08	Akaike info criterion		43.00447			
1.18E+19	Schwarz criterion		43.15743			
1071.112	Hannan-Quinn criter.		43.06272			
9.757305	Durbin-Watso	on stat	1.735760			
0.000843						
	Coefficient 60238430 1161182. 0.897065 0.775083 5.07E+08 1.18E+19 1071.112 9.757305	Coefficient Std. Error 60238430 96535343 1161182. 28176794 0.897065 Mean depende 0.775083 S.D. depende Akaike info control 1.18E+19 Schwarz crite 1071.112 Hannan-Quin 9.757305 Durbin-Watso 0.000843	Coefficient Std. Error t-Statistic 60238430 96535343 0.624004 1161182. 28176794 4.041211 0.897065 Mean dependent var 5.07E+08 S.D. dependent var Akaike info criterion 1.18E+19 Schwarz criterion 1071.112 Hannan-Quinn criter. 9.757305 Durbin-Watson stat 0.000843			

Source: Author's Computation from E-View 9.0

Table 5: General Result

The F - Statistics shows that the overall estimate of the regression has a good fit and is statistically significant. The R² (R squared) which measures the overall goodness of fit of the entire regression indicates a 89.7% value while the adjusted 77.5% hence implying that the independent variable explain dependent variable to the tune of 77.5%. Also the Durbin Watson (DW) statistics DW = 1.735760 which hovers around 2.0 showing absence of autocorrelation. It equally showed that the F-statistic is

Given the decision criteria to reject H_0 if the t-statistics is >2.0 and the probability of the t-statistics is < 0.05. Table 4. shows the t-statistics of M2 as 4.041211>2.0 with a probability of the t-statistics of

Step 1: Restatement of the hypothesis. The ratio of Private sector credit to GDP does not have positive and significant impact on economic growth in Nigeria.

9.757305 which is greater than 2.5 while the probability value being 0.000843 is less than 5% indicating that the overall regression is statistically significant. From the result table, the coefficient of the variable broad money supply and GDP indicate positive sign and statistically significant at 5% critical level. Thus, there is a strong relationship between broad money supply and GDP in the short run. This implies that, a percentage change (increase) in broad money supply will lead to increase in GDP. an

Step 4: Decision

0.0073< 0.05. We reject the null hypothesis (H0) and conclude that broad money supply has positive and significantly impact on economic growth in Nigeria.

Test of Hypothesis Two

Step 2: Statement of Decision Criteria Reject H_o if the t-statistics is >2.0 and the probability of the t-statistics is <0.05. Step 3: Presentation of test result Table 6: Test of Hypothesis Two

Dependent Variable: GDP								
Method: Least Squares								
Date: 12/15/20 Time: 09:	Date: 12/15/20 Time: 09:43							
Sample: 1986 2019								
Periods included: 35								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	60238430	96535343	0.624004	0.5357				
RCPSGDP	2410.176	15421.54	3.156286	0.0265				
R-squared	0.897065	Mean depend	lent var	1.23E+08				
Adjusted R-squared	0.775083	S.D. depende	nt var	5.04E+08				
S.E. of regression	5.07E+08	Akaike info c	riterion	43.00447				
Sum squared resid	1.18E+19	Schwarz criterion		43.15743				
Log likelihood	1071.112	Hannan-Quin	n criter.	43.06272				
F-statistic	9.757305	Durbin-Watso	on stat	1.735760				
Prob(F-statistic)	0.000843							

Source: Author's Computation from E-View 9.0

Step 4: Decision

Given the decision criteria to reject H_0 if the t-statistics is >2.0 and the probability of the t-statistics is < 0.05. Table 4.3.2 shows the t-statistics of RCPSGDP as 3.156286>2.0 with a probability of the t-

statistics of 0.0265 < 0.05. We reject the null hypothesis (H0) and conclude that the ratio of Private sector credit to GDP has positive and significant impact on economic growth in Nigeria.

Discussion of Findings

In hypothesis one, the study discovered that broad money supply has positive and significantly impact on economic growth in Nigeria due to the fact that the tstatistics of M2 which was 4.041211 was greater than 2.0 while the probability being 0.0073 was less than 0.05. This discovery is in agreement with the findings of [3] who carried out a study on the impact of broad money supply on Nigerian economic growth from 1987 to 2010. They disocvered that there is a positive and significant relationship between money supply and economic growth in Nigeria. [1] also supported this disocvery in their finding which stated that money supply and interest rate have positive and significante impact on economic growth. The authors studied the impact of money supply on economice growth Nigeria. The researcher discovered that the ratio of Private sector credit to GDP has positive and significant impact on economic growth in Nigeria based on the premise that the t-statistics being 3.156286 was greater than 2.0 while the probability value being 0.0265 was less than 0.05. This discovery is in agreement with the finding of [5]. The authors studied the impact of private sector credit on economic growth in Nigeria from 1993 to 2013 and found out

that private sector credit increased economic growth when domestic or local conditions were favorable and the absorptive capacity of the domestic economy for credit was estimated at 29% of the GDP in 2013. [5], also supported this discovery in their finding where they

The conclusion drawn from this study is that the economic growth and financial deepening in Nigeria following the supply-leading hypothesis and not the demand-following, feedback, or neutral hypotheses. The policy implication of this finding is that to grow the Nigerian economy attention must be given to the

The following recommendations are made for this study: The CBN should be made effective more in its monetary management by making all financial markets organized so as to accentuate the effects of monetary policy variables like Broad money supply. This promotes real GDP in Nigeria. The government should encourage Monetary authorities like the Central Bank of Nigeria to build a conducive and enabling environment for friendly interest rates so that prospective investors can increase their investment nation's raise the production capacity. This can be achieved through Opata and Obasikene disovered that there is a positive and statistically significant effect of private sector credit on output. They investigated the impact of private sector credit on

the impact of private sector credit on economic growth in Nigeria from 2000 to

2014

CONCLUSION

level of development of the financial system as it may boost the capital accumulation efficiency and/or increase the level of savings and thus investment. It was finaly concluded that broad money supply and ratio of Private sector credit to GDP has positive and significant impact on economic growth in Nigeria.

RECOMMENDATIONS

low unremunerated reserve requirements and adequate physical and financial infrastructure to remove the impediments that lead to the gap between the savings and lending rate. This is because the interest rate is the stimulating factor in savings and investment decisions in the economy. Attempts should be made by the improve government to on infrastructure in order to reduce cost of production and increase exportation so as the objective achieve of devaluation. This adds to the country's national income and in general promotes the real GDP.

REFERENCES

- 1. Abass, S.M and Christensen, J. E, (2014). The role of money supply markets in economic growth: an empirical investigation for low income countries and emerging Markets, International Monetary Fund Journal, 12 (1), 12 1
- 2. Abdul Raziq, B. and Others (2003, June), Money Supply in Qatar: An Empirical Investigation", Journal of Economic and Administrative Sciences, 18(2).
- 3. Bakang,m (2015). "Effect of Financial Deepening on Economic Growth in Kenya"International Journal of Business and Commerce .4(7); pp 1-50.

- 4. Central Bank of Nigeria (2018). Annual Report and Statement of Account. December, Abuja, Nigeria.
- 5. Chude, N. P. & Chude, D. I. (2016). Impact of broad money supply on Nigerian economicgrowth, International Journal of Banking and Finance Research, 2 (1), 12 22.
- 6. Chuku, A.C (2015). Measuring the Effects of Monetary Policy Innovations in Nigeria: A Structural Vector Autoregressive (SVAR) Approach. African Journal of Accounting Economics, finance and Banking Research, 5 (5), 112 129.

- 7. Cordelia, O. O. (2019). Effect of money supply on economic growth: a comparative study of Nigeria and Ghana, International Journal of Social Science Studies, 7 (3), 12 21.
- 8. Echekoba, F. N. & Ubesie, M. C. (2018). Assessment of financial deepening on the growth ofNigerian economy: 1990-2016, International Journal of Academic Management Science Research (IJAMSR), 2 (11), 19 23.
- 9. El.seoud, M.S.A (2014), Testing the Relationship between Money Supply and GDP in Bahrain.International Journal of Economics, Commerce and Management United Kingdom, 1(5):1-16.
- 10. Emmanuel, O. O., Abiola, O. A. & Udoji, A. O. (2015).Impact of private sector credit oneconomic growth in Nigeria, CBN Journal of Applied Statistics, 6 (2), 43 52.
- 11. Engle, R.F and Granger, C. W. S (1987). Co-integration and Error Correction Regression:Estimation and Testing. Economentica. 55(2): 251-76
- 12. Laidler D.E.W (1993). The Demand for Money: Theories, Evidence and Problems. 4th Edition, New York: Harper Collins.

- Opata and Obasikene
- 13. Hussein, A. (2005), Granger-Causality between Inflation, Money Growth, Currency Devaluation and Economic Growth, International Journal of Applied Econometrics and Quantitative Studies, 2(3).
- 14. Inam, U. (2014). Money Supply and Economic Growth in Nigeria: An Econometric Analysis (2011). Journal of Economics and Sustainable Development, 5(12):149-155.
- 15. Mukhtar, D. G. & Muhammad, H. N. (2017). Impact of money supply on economic growth in Nigeria (1981–2015), Dutse Journal of Economics & Development Studies, 3 (1), 133-144.
- 16. Ndebbio, J. E. (2014). Financial deepening, economic growth and development: Evidence from selected Sub- Saharan african countries. AERC working papers, 142.2.
- 17. Nouri, M. and Samimi, A. (2011). The Impact of Monetary Policy on Economic Growth in Iran. Middle-East Journal of Scientific Research, 9(6), 740-743.
- 18. Ogunmuyiwa, M.S. and Ekone, A.F. (2010). Money Supply-Economic Growth Nexus in Nigeria. Journal of Social Sciences, 22(3), 199-204.

Appendix1
Showing the data for the study

YR	M2	ving the data for th RCPSGDP	GDP
1986	34.89	0.49819	1151086
1987	44.21	0.51036	1119063
1988	48.11	0.49032	1216464
1989	50.76	0.39051	1461131
1990	45.9	0.44339	1797376
1991	52.86	0.48811	1812277
1992	75.4	0.50563	1627060
1993	111.11	0.64182	1698859
1994	165.34	0.6248	1877736
1995	230.29	0.50072	2424108
1996	289.09	2.74132	48233
1997	345.85	0.5179	1289552
1998	413.28	0.52434	1577290
1999	488.15	0.49686	1802008
2000	628.95	0.54165	2079862
2001	878.46	0.46155	3423819
2002	1269.32	0.79263	2333017
2003	1505.96	0.73509	2983621
2004	1952.92	6.54853	3439915
2005	2131.82	0.54644	3690295
2006	2637.91	0.30277	1244030
2007	3797.91	0.00663	1330771
2008	5127.4	9.7756	1784490
2009	8008.2	0.60613	2171807
2010	9411.11	0.14274	2575117
2011	11034.94	0.094913	2558562
2012	12172.49	0.05736	2399822
2013	13895.39	0.08211	2490578
2014	15160.29	0.00241	3143338
2015	17679.29	0.00477	3486691
2016	18901.3	8.68707	2.73E+08
2017	21827.33	0.96605	3.35E+08
2018	25072.11	0.77429	4.12E+08
2019	2.96E+04	0.54401	6.44E+08

Source: CBN Statistical Bulletin

	Appendix II: Descriptive Stat	istics Output
	M2	GDP
Mean	13.02348	13.42102
Median	15.47941	15.41725
Maximum	19.36248	19.57493
Minimum	0.038315	0.247198
Std. Dev.	6.123764	4.965419
Skewness	-1.455006	-1.956413
Kurtosis	3.443851	5.366624
Jarque-Bera	18.05244	43.56483
Probability	0.000120	0.00000
Sum	651.1740	671.0511
Sum Sq. Dev.	1837.524	1208.114
Observations	35	35

Appendix III: Output of Unit Root Tests

Broad N	Monev	Sup	plv
---------	-------	-----	-----

Date: 12/15/20 Time: 09:43							

Ratio of Private Sector Credit to GDP

Panel unit root test: Summary							
Series: D(RCPSGDP)							
Date: 12/15/20 Time: 09:43							
Sample: 1986 2019							
Exogenous variables: None							
User-specified lags: 1							
Newey-West automatic bandwidth selection and Bartlett kernel							
Balanced observations for each test							
			Cross-				
Method	Statistic	Prob.**	sections	Obs			
Null: Unit root (assumes common unit root process)							
Levin, Lin & Chu t*	-10.01640	0.0000	5	35			
Null: Unit root (assumes individual unit root process)							
ADF - Fisher Chi-square	22.4437	0.0130	5	35			
PP - Fisher Chi-square	52.6026	0.0000	5	40			
** Probabilities for Fisher tests are computed using an asymptotic Chi							
square distribution. All other tests assume asymptotic normality.							

Gross Domestic Product

Panel unit root test: Summary							
Series: D(GDP)							
Date: 12/15/20 Time: 09:43							
Sample: 1986 2019							
Exogenous variables: None							
User-specified lags: 1							
Newey-West automatic bandwidth selection and Bartlett kernel							
Balanced observations for each test							
			Cross-				
Method	Statistic	Prob.**	sections	Obs			
Null: Unit root (assumes common unit root process)							
Levin, Lin & Chu t*	5.31612	0.0000	5	35			
Null: Unit root (assumes individual unit root process)							
ADF - Fisher Chi-square	31.7844	0.0004	5	35			
PP - Fisher Chi-square	65.8699	0.0000	5	40			
** Probabilities for Fisher tests are computed using an asymptotic Chi							
-square distribution. All other tests assume asymptotic normality.							