ISSN: 2550-794X

Element of Mathematical methods of Physics and Engineering

 $\mathbf{B}\mathbf{y}$

Emmanuel I. Ugwu (Ph.D)

Industrial physics Department Ebonyi State University, Abakaliki.

www.idosr.org/E.BOOK Ugwu

PREFACE

Mathematical physics is an inter disciplinary field of academic study in between Mathematics and Physics, aimed at studying and solving problems inspired by physics and engineering within Mathematical frame work. It is slightly different from theoretical physics as mathematical physics involves and emphasizes the mathematical rigor in physics just as it can be seen in mathematics while theoretical physics emphasizes on the links to actual observations and experimental physics as may be presented intuitively and heuristically often with approximation by the physicists or engineers.

Generally, for physicists and Engineers mathematics is not only a tool by means of which phenomena can be calculated, but rather it is also the main source of concepts, and principles by means of which new theories can be created from mathematics in the physical sciences and engineering.

One of the problems with courses in mathematical physics is that students do not always see the tie of mathematics with physics and engineering as a result of their poor background in mathematics coupled with their mathematical phobia occasioned by poor background of the subject right from the lower level of their educational carrier.

In this book, we present those concept and mathematical topics that are necessary for any student studying physics and engineering at undergraduate and to some extent at master's level.

The book provides the mathematical topics that are necessary in physics and engineering with techniques for solving them along with many examples.

It is the outgrowth of the lecture notes which I have used in teaching the course over nineteen years stays at Ebonyi State University for mathematical and theoretical physics courses that has been the major courses I have taught at Pg and undergraduate levels. My special thanks go to my colleagues in the department.

I am especially thankful to the members of my family for their understanding and support during the preparation of this book.

Dr. E. I. Ugwu.

SEPTEMBER, 2020.

<u>www.idosr.org/E.BOOK</u> Ugwu

BIOGRAPHY

Emmanuel Ifeanyi Ugwu(Ph.D) is a lecturer in Ebonyi State University in the Department of Industrial Physics since 1999 till date. My B.Sc. and Master in Science were obtained from Nnamdi Azikiwe University, Awka, Nigeria where I majored in Solid State Physics were in 1994 and 1997 respectively. My Ph.D which I completed in 2014, before then I have been teaching Method of Theoretical/Mathematical Physics in at both undergraduate and graduate levels since I joined university service as a lecturer 1999 and I had published a book titled Fundamental of Mathematical Physics and Engineering, Element of Statistical Physics, etc. My area is specialization Experimental/Computational nanoscience. I have attended and presented papers in so many conferences within and outside and within Nigeria and currently I have more than eighty journal publications and Textbooks coupled with some chapters- contribution to textbooks in some reputable publishing houses. My research interest is in Nanoscience Electromagnetic wave. which ignited as result of my work from my M.Sc. where I had worked on the growth and characterization of feS2, FeCl2 and many other thin films which eventually ushered me into the world of Nanoscience. After that my passion and research inclination has been on nanoscience. had worked on growth, optical and structural characterization chalcognide thin film like Copper Sulphide, CdS, MnS, and Antimony Selenide etc I have supervised students on the same areas at both undergraduate and graduate levels. In resent time, we have used a mathematical model in form of beam propagation method to assess the behaviour of electromagnetic wave propagation through thin film medium with consideration given to influence of dielectric constant to the propagating wave applying Green's function and Lippmann-Schwinger equations. My has also done work on Oxide based thin films such as SO₂, Nikel Oxide, Titanium Oxide, ZnO thin films and other perovskite -Type oxides etc. with a view of ascertaining their potentiality in solar cell and optoelectronic devices to enable us assess which one that is more efficient for commercial application.

EMMANUEL IFEANYI UGWU(Ph.D)

www.idosr.org/E.BOOK Ugwu

CONTENTS

1.1.0 Vector and scalars	1
1.1.1 Direction angles and direction cosines	2
1.1.2 Vector addition	3
1.1.3 Multiplication by a scalar	4
1.1.4 Laws OF VECTOR ALGEBRA	5
1.1.5 DIRECTION COSINES	5
1.2 ANGLE BETWEEN ANY TWO VECTORS	6
1.3 RELATIVE VECTORS	8
1.3.0 Scalar product of vectors	11
1.3.1Vector product	12
1.3.2 The vector (cross or outer) product	14
1.3.3 The triple scalar product $A.(B \times C)$	18
1.3.4 The triple vector product	19
1.4.1 COPLANAR VECTORS	24
1.4.2 Distance from a point to a plane using scalar product	26
1.4.3 Shortest distance between two lines by scalar product	26
1.5.1 Change of coordinate system	30
1.5.2 The linear vector space V_n	32
1.5.3 Vector differentiation	33
1.6.1Vector integration	38
1.6.2 Grad div and curl	40
1.6.3 Space curves	43
1.6.4 Motion in a plane	44

www.idosr.org/E.BOOK 1.6.5 A vector treatment of classical orbit theory	Ugwu 45
1.6.6 Vector differentiation of a scalar field and the gradient	46
1.6.7 Conservative vector field	48
1.6.8 The vector differential operator∇	48
1.6.9 Vector differentiation of a vector field	48
1.6.10 The divergence of a vector	49
1.6.11 The operator ∇^2 , the Laplacian	50
1.6.12 The Curl of Vector	51
1.6.13 Formulas involving ∇	54
1.6.14 Orthogonal curvilinear coordinates	54
2.1.0 Matrix Algebra and Element of Tensors	57
2.1.1 Matrix Operation	58
2.1.2 Multiplication of Matrix	59
2.1.3 Null and Identity Matrices	60
2.1.4 Transpose of a Matrix	60
2.1.4 Determinant of a Matrix	61
2.1.5 The rank of a matrix	63
2.1.6 Systems of linear equation	63
2.2.1 INNER PRODUCT AND NORMS	67
2.2.2 INNER PRODUCTS OF FUNCTION SPACE	69
2.2.3 NORMS	70
2.2.4 ORTHOGONALITY AND ORTHORMALITY	71
2.3.0 ELEMENT OF TENSOR ANALYSIS	73
2.3.2TENSORS OF SECOND RANK	74
2.3.3 BASIC RULES OF OPERATION WITH TENSORS	75

www.idosr.org/E.BOOK 2.3.4 SCALAR MULTIPLICATION AND ADDITION	Ugwu 76
2.3.5 CONTRACTION AND MULTIPLICATION	77
2.3.6 Isotropic tensors.	77
2.3.7 ASSOCIATED TENSORS	79
3.1.1Complex Number	80
3.1.2 Argan Diagram	81
3.1.3 De Moivre theorem	82
3.1.4 Complex Integration	90
3.2.1 Contour integral	86
3.2.2COMPLEX VARIABLES AND OF CONTOUR INTEGRATION	90
3.2.3 Complex integration	92
3.2.5 Cauchy's theorem	94
3.2.6 Cauchy's integral formula and its derivatives	98
3.2.7 Cauchy's residue theorem and contour integration	99
3.2.8 POLAR AND RESIDUES 4.1.0 Groups	109 116
4.1.1 FOURIER SERIES	136
4.1.3Laplace transforms	148
5.1.0 Ordinary differential equation	155
5.2.0 Solution of First Order Linear Differential Equation	162
5.2.1 Direct Integration	162
5.2.2 Separation of variable	161
5.2.3 Exact Differential Equations	164
5.2.4Initial and boundary conditions	166
5.2.5 Bernoulli Equation	168

www.idosr.org/E.BOOK 5.3.1 Higher order differential equations.	Ugwu 170
5.3.2 The Wronskian	171
6.1.1 The Leibnitz-Maclaurin method	188
6.1.2 THE FROBENIUS METHOD	190
6.1.3 BESSEL'S EQUATION	196
7.1.0 Partial differential equation	201
7.1.1 Classification of PDE's	201
7.1.2 Method of Solution of PDE's	202
7.1.3 Laplace's Equation	208
7.1.4 Separation of Variables in Polar Coordinates	211
8.1.1 GREEN'S FUNCTIONS	213
8.1.2 SOLUTION INVOLVING SERIES EXPANSION	218
8.1.3 FREE SPACE AND REGION DEPENDENT	223
9.1.1 Gamma function	259
9.1.3 Beta Function	265
Bibliography	295