©IDOSR PUBLICATIONS International Digital Organization for Scientific Research IDOSR JOURNAL OF SCIENTIFIC RESEARCH 3(3) 69-82, 2018.

ISSN: 2550-794X

Evaluation of the Antibiotics Producing Potentials of *Actinomycetes* species Isolated from the Soil from Ikwo, South Eastern Nigeria.

Onwa Ndubuisi Collins and Elom Emeka Elom

Department of Applied Microbiology Ebonyi State University, Abakaliki, Nigeria.

ABSTRACT

The microbial analysis of soil samples for the presence of antibiotic-producing Actinomycete species from Ikwo Local Government Area of Ebonyi State, Nigeria was carried out. A total of six soil samples were collected from different locations in Envibichiri and Noyo communities of Ikwo L.G.A and were immediately sent to he microbiology laboratory for analysis. Isolation Actinomycete species was done using Actinomycete isolation agar and carried out under standard microbiological procedure. Identification and characterization were done using morphological, physiological, cultural and biochemical tests. Screening of the isolates for their antimicrobial activity was done by the cross streak method against the following clinical isolates: pseudomonas aeruginosa, E. coli, Klebsiella spp., Enterobacter spp and Staphyloccus aureus. Comparison of the antimicrobial activity of the Actinomycetes isolates to commonly used antibiotics was carried out using the Kirby Bauer agar well diffusion method. The optimum growth temperature and pH for Actinomycetes species that showed activity against the test isolates were determined. Results showed that 6 species of Actinomycete from Enyibichiri soil showed activity against one or more of the test organisms and 3 species from Novo soil showed activity against one or more of the test organisms. Characterization of the isolates that showed activity against one or more of the test isolates revealed that all of them were Streptomyces species. The Streplomyces species Noyo I produced the highest activity against Pseudomonas aeruginosa, with inhibition zone diameter (IZD) of 19mm while Streptomyces species Enyibichiri 2 (SSE2) produced the highest activity against Escherichia coil with IZD of 26mm. SSE4 produced the greatest activity against Klebsiella spp. with IZD of 30mm while SSE3 produced the greatest activity against Enterobacter spp. with IZD of 25mm. Streptomyces species Noyo I produced the highest activity against Staphylococcus aureus with IZD of 22mm. Results of the comparative antimicrobial activity showed that the activities of Streptomyces species were less for all the test organisms. Also the optimum growth temperature for all the *Streptomyces* species was 30°C while the optimum pH was 8. This study indicates that the Streptomyces species that had activities against the test organisms may have potentials as sources of antimicrobial agents. Keywords: Actinomycetes, Soil, Antibiotics, Antimicrobial activity.

INTRODUCTION

Actinomycetales are an order of The Actinobacteria. A member of the order is often called an Actinomycete. Actinomycete are classified as a group of gram-positive bacteria that are unique for forming abilities spore formation of mycelia structures (Stephen, 2014). It produces branching mycelium which may be of two kinds: substrate mycelium and aerial mycelium [1]. The colonies of Actinomycetes have pastel colours, soil-like odour. Hard and stuck into agar. Many species of Actinomycetes produce anti-microbial compounds under certain conditions and growth media [2]. Streptomycin, actinomycin and streptothricin are all medically important antibiotics isolated from Actinomycetes bacteria [3]. Almost two – thirds of the natural antimicrobial drug compounds used currently are produced by different species of Actinomycetes [4].

These bacteria are therefore extremely relevant to Scientists, pharmaceutical industries and agricultural industries. Recent report show that this group of microorganism still remains vital source of antibiotics [5]. As a result of the increasing prevalence of antibiotic resistant pathogens and pharmacological limitation of antibiotics, there is an exigency for new antimicrobial substances from bacteria [6].

The two major groups of soil Actinomycetes that serve as important sources of antibiotics are *Streptomyces* and *Micromonaspora*. The Streptomycetes account for about 80% of the total antibiotic products [7]. Othere Actrinomycetes that produce bioactive compounds, but on a lower sacle includes *Saccharopolyspora*, *Amycolatopsis* and *Actinoplanes* [8].

especially marine Nature soil and environments harbor a large number/population of microorganisms with bioactivity that are yet to be discovered [9]. Actinomycetes are well known for their ability to produce bioactive compounds especially antibiotics [10]. Screening of soils from Ikwo LGA of Ebonyi State for antibacterial activity by Actinomycetes is yet to be carried out. New/novel antibiotics will definitely reduce mortality and morbidity burden in our health institutions.

Soil is a unit entity that's inhabits varieties of micro-organisms and the microbial community is an integral part of the soil. Actinomycetes are primarily soil inhabitants and are also very widely distributed in nature [11]; [12]. They are also well known as soil saprophytes and are responsible for the distinctive earthy odour of freshly ploughed soil due to the production of geosmin. The dominant Actinomycetes in soil is the genus Streptomyces although, others like Norcardia Microbispora, Micromonospora, Actinmvces Actinoplanes Streptosporangium has also been isolated from the soil. The number and variety of Actinomycetes present in any soil sample would be significantly influenced by geographical location, soil temperature, soil type, soil pH, organic matter content, agricultural activities, aeration, nutrient

availability, moisture content and soil vegetation [13]. Actinomycetes have been isolated from diverse soil types and locations such as arid, tropical forest, mining. cave, swamp, desert savannah. They are particularly abundant in slightly alkaline soil rich in organic matters and produce several structurally diverse secondary metabolites agricultural pharmaceutical and importance. Actinomycetes play important ecological role in the recycling and mineralization of nutrients in the soil. They help to recycle nutrients by degrading vast numbers of organic matter in the soil and are found most common in compost. They act as plant growth promoters by helping in nitrogen fixation, solubilization of nutrients. immobilization of nutrients. siderophpores production, biological control and soil structure maintenance [14]; [15]; [16]; [17]. Actinomycetes are of great practical important in nature and seem to be ultimately involved in soil ecology [18].

This research is aimed at isolation of actinomycetes with potentials for antibacterial activity from soil samples form Ikwo LGA. There is a need to search for new and efficient antibiotics because of the increasing multiple resistance of microorganisms to available antibiotics.

Statement of Problem

The project was conceived as a result of the increasing pathogen resistance to commonly used antibiotics [19]. Multidrug resistance strains of pathogens are also emerging [20]. There is a need for new antibiotics to cure emerging and reemerging infections (WHO, 2001b). it has been reported that treatment cost of infectious diseases is increasing because of the increasing resistance of pathogens to antibiotics (WHO, 2001a).

Methods Sample Collection

A total of six soil samples were collected between the months of October to December, 2017 from different locations in Enyibichiri and Noyo communities of Ikwo L.G.A and were immediately transported to the Microbiology laboratory for analysis. Samples that were not processed on the day of collection

were stored in the refrigerator at 4°C. Each soil sample was collected by clearing a minor part of the soil with a sterile spatula before inserting a soil sampling tube (apple core) up to the depth of 4 inches to collect the top soil. The tube was subsequently emptied into a plastic bag, closed and labeled with a marker pen [21].

Sampling processing

The soil slurry was made by suspending 10g of the collected dry soil in 90ml distilled water. The slurry was vortexed for 2 minutes in an orbital shaker incubator at 27°C, and their contents was designated as stock cultures.

Isolation of Actinomycetes from Soil Samples

Isolation of Actinomycetes was done by serial dilution and plating technique (pour plate) using Actinomycetes isolation agar medium. Distilled water (9ml) was taken in each of the 7 test and labeled 1 to 7. Iml of the supernatant liquid from the dissolved soil sample was transferred into the test tubes as to achieve the serial dilution of 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} and 10⁻⁷ ml of the dilution sample. Next, 1 ml volume of the least dilution (10⁻⁷) was measured into the petri-dish before 15ml of the sterilized pouring Actinomycetes isolation agar unto it. The plate was shaken and allowed to gel at room temperature. All pour plates were labeled and incubated at 28°C for 48hours [22], [23] [24].

Pure Cultures

Isolated colonies were further purified by multiple streaking methods using Actinomycetes isolation agar. The distinct colonies were labeled sand inoculated into Actinomycetes agar slants. The labeled Actinomycetes isolates were used for further studies.

Characterization of Isolates

The isolates were characterized using morphological, cultural, biochemical and physiological tests

Cultural Characterization

The cultural characteristics was examined by incubating the isolates for 10 days at 30 °C on Actinomycetes isolation agar. After incubation, the growth, aerial mass colour

and melanoid pigment production were recorded [25].

Aerial Mass Colour

The colour of the mature sporulating aerial mycelium was recorded in a simple way (White, grey, red, green, blue and violet). When the aerial mass colour falls between two colour series, both the colours are recorded. If the aerial mass colour of any isolate shows inter mediate tints, then also, both the colour series are noted [2].

Melanoid Pigment

The grouping was made on the production of melanoid pigments (i.e greenish brown, brownish black or distinct brown, pigment modified by other colours) on the medium. The isolates are grouped as melanoid pigment produced (+) and not produced (-) [7].

Reverse Side Pigments

The species were divided into two groups, according to their ability to produce characteristic pigments on the reverse side of the colony, namely, distinctive (+) and not distinctive or none (-). In case, a colour with low chroma such as pale yellow, olive or yellowish brown occurs, it is included in the latter group (-) [12].

Soluble Pigments

The species were divided into two groups based on their ability to produce soluble pigments other than melanin: namely, produced (+) and not produced (-). The colour is recorded (red, orange, green, yellow, blue and violet) [20].

Microscopic Observation

Gram staining, acid fast staining was performed to check the morphology of the cells and spore chain morphology was identified by slide culture technique [22].

Gram Staining Test

A smear of culture was made on a clean grease-free slide and was allowed to air dry before being heat fixed with the aid of a Bunsen burner flame and the smear was covered with crystal violet for 30 seconds and washed off with clean water. The smear was flooded with klugols iodine (a mordant) and allowed to stand for 60 seconds before rinsing the slide with immediately clean water. Ιt was decolorized with drops of acetone and the smear was covered with safranine reagent for 30 seconds. The slide was rinsed

slowly under running tap and was examined microscopically using X 100 objective lens. Gram positive bacteria appeared purple while the *Escherichia coli* (Gram negative) which was used as a control appeared red [25].

Acid Fast Stain Method

A smear of culture was made on clean grease-free slide and was allowed to air dry before being heat fixed with the aid of a Bunsen burner flame. The slide was then flooded with carbol fuchsin and allowed to stand for 30 seconds. The slide was then heated to dry and rinsed off in tap water. The slide was then flooded with a 1% solution of sulphuric acid alcohol (methanol) and allowed to stand for 15 to 20 seconds, thus, removing the stain from the cells that are unprotected by a waxy lipid layer. Thereafter, the cells was stained (counter stain) in methylene blue for 30 seconds, and excess stain was rinsed with slow running tap water. The viewed slide was then with microscope using the oil immersion lens. Acid-fast bacteria retain Carbol Fuchsin so they appeard red, while non-acid-fast bacteria pick up the counter-stain and become blue. This test distinguishes between the Streptomyces and non-Streptomyces Actinomycetes [16].

Slide Culture Technique

A 10mm agar block (Actinomycetes agar) was cut with sterile scalpel ad lifted to the centre of the slide in the petri-dish. A very small quantity of the Actinomycetes culture was inoculated at the four corners of the agar block on the slide. The cover slip was then placed over the inoculated agar block and incubated at 30°C for 96 hours (4 days). The slide was then examined under the microscope (x 10) where undisturbed conidiophores, conidial ontogeny and conidia were observed. A drop of 95% alcohol was poured unto the slide and then stained with 1% cotton blue in lactophenol and mounted for observation [9].

Spore Chain Morphology

With regard to spore chains, the isolates were grouped into 'sections'. The species belonging to the genus *Streptomyces* are divided into three sections (Lingakumar *et al.*, 2011), namely rectiflexibles (RF), retinaculiaperti (RA) and Spirales (S).

When an isolate forms two types of spore chains, both are noted (e.g. SRA and BIV-S).

Biochemical Characterization

Actinomycetes isolates were characterized using citrate utilization, starch hydrolysis case in hydrolysis, urease production, indole production, methyl red, Voges-proskauer, catalase and oxidase production tests [11].

Oxidase Test

A 1.1g oxidase reagent (tetramethyl-p-phenyldiaminedihydrochloride) was dissolved in 100ml of distilled water. Drops of the solution were poured unto a filter paper in a petri dish. Using a glass rod, the test sample was smeared unto the filter paper and observed for purple coloration. This is a positive result [5].

Indole Test

The test organism was inoculated into the bijou bottle containing 3ml of sterile peptone water and incubated for 48hrs at 30°C. Then, indole production was tested by adding 0.5ml of Kovac's reagent, shake gently and observed for a red colour on the surface layer within 10 minutes [8].

Catalase Test

A sterile wire loop was used to pick a colony of the test organism and immersed into 2 drops of 3% hydrogen peroxide and observed for immediate bubbles [23].

Citrate Utilization Test

Five (5) ml of the media was dispensed into 16mm test tubes and autoclaved at 121°C at 15psi for 15 minutes. The tubes were cooled in a slanted position. The slants were inoculated by stabbing with a straight wire loop and incubated at 30°C for 48 hours. Growth with color change from green to intense blue indicates a positive reaction, otherwise negative [7].

Urease Test

The entire surface of a Christensen's urea slope was inoculated with the test organism and incubated at 37°C for 48 hours. After the incubation period, they were observed for red-pink colouration [19].

Methyl Red Test

Five (5) ml of the broth was dispensed into each of the test tube and sterilized by autoclaving at 15psi (121°C) for 15 minutes. The test isolates were then inoculated into each of the test tubes and

incubated at 30°C for 4 days. After incubation one drop of methyl red reagent was added to the test tubes and observed for a color change to red coloration, which indicates positive production of mixed acid [7].

Voges-Proskauer (VP)

The MR-VP broth was prepared according to the manufacturers instruction, 5ml of the broth was dispensed into each of the test tube and sterilized by autoclaving at 15 psi (121°C) for 15 minutes. The test isolates was then inoculated into each of the test tubes and incubated at 30°C for 48 hours. After incubation 0.6ml of alpha-naphthol (Barrit's solution followed by 0.2ml of 40% KOH (Barrit's solution B) were added to the test tubes, gently shook and allowed to stand for 15 minutes. After which the test tubes were observed for a colour change to pinkishs red colouration, which indicates positive production of acetion and 2,3-butanediol.

Screening of the Actinomycetes for Antimicrobial Activity

Screening of the isolates for antimicrobial activity was done by cross streaking according to the method of [14]. Each of the Actinomycetes isolates were streaked as a straight line on Mueller Hinton Agar casein and starch agar medium respectively. The media were incubated at 27°C for 6 days (144h). After the 6th day, clinical isolates of Pseudomonas E. coli, Klebsiella spp., aeruginosa, Enterobacter spp and Staphylococcus aureus were streaked at right angle, but not touching each other, and then incubated at 37°C for 24h. The zone of inhibition was measured to the nearest millimeter with meter rule [9].

Comparing the Activity of the Antimicrobial Agents Produced by Actinomycete Isolates to Commonly used Antibiotics

casein Starch broth was prepared according to the manufacturer's instruction and 10ml taken in a bijou bottle, sterilized and inoculated with 0.1ml of 0.5 McFarland standard of Actinomycete culture. It was incubated in a shaker flask with intermittent shakings at 250 rpm for seven days at a temperature of 30°C. After seven days, the supernatant was centrifuged at 2000rpm for 5 minutes and 0.5 ml taken into a hole that was bored with a cock borer at the center of the Petri-dish containing Mueller Hinton agar. Initially. 1ml McFarland of 24 hour old culture of the clinical isolates was poured on the prepared MHA and spread unto the surface with a swab. It was allowed to stand for 15 minutes before the hole was made at the center of the petri-dish with a sterile cock borer. Following the Kirby Bauer disc diffusion method according to the recommendations of the Clinical Laboratory Standard Institute (CLSI) (CLSI, 2015), the antibiotic disks which includes Erythromycin (15 μg), Ofloxacin (5 μg), Bacitracin (10 µg), Amoxicillin Clavulanic Acid (30 µg), Cefoxitin (30 µg) and Amikacin (30 µg) that were produced by Oxoid UK was aseptically placed on the surface of the inoculated petri-dish using sterile forceps. The plate was incubated at 37°C for 24 hours and the zone of inhibition of both the antibiotics and the supernatant from the actinomycetes broth culture were measured to the nearest millimeter with a meter rule and the results recorded.

Carbohydrate Utilization Test

The isolated organism were tested for its ability to utilize carbon sources such as dextrose (glucose). Fructose, maltose, mannitol, starch and sucrose.

Procedure:

The preparation of the carbohydrate fermentation broth was done as follows; 1g of trypticase, 0.5g of carbohydrate, 0.5g of sodium chloride and 0.0189mg of phenol red were measured and dissolved in 100ml of distilled water in a conical flask. This repeated for each of the carbohydrate listed above. The prepared phenol red broth was poured into a screw capped fermentation tubes and each tube was inserted an inverted Durham tube. The Durham tube was fully filled with broth. The tubes were sterilized at 115°C for 15 minutes. The tubes were allowed to cool before inoculating the broth with bacterial culture using the sterile wire loop. The tubes were incubated at 37°C for 48 hours and observed.

1. If the medium changes from red to yellow; it is an indication that the organism has fermented the given

<u>www.idosr.org</u> Onwa and Elom

carbohydrate and produced organic acids that reduced the pH of the medium to acidic.

- 2. If the medium turns yellow with gas bubbles in the inverted Durham tube. This shows that the organism has fermented the given carbohydrate and gas was produced.
- 3. If the broth retains the red color, it is an indication that the organism cannot utilize the particular carbohydrate in the broth.

Physiological Characterization Temperature

The ability of the isolate to grow at various temperatures (20 to 40°C) was evaluated to determined the optimum growth temperature of the isolated actinomycetes.

Procedure: The actinomycetes isolation broth was prepared and 5 ml of it taken into each of the bijou bottle. 0.1ml of 0.5 McFarland of the actinomycetes broth was poured into the bijou bottles incubated differently at the temperatures of 20°C of 20°C, 25°C, 30°C, 35°C and 40°c respectively for 92 hours (4 days) after turbidity (microbial which the numbers) was estimated using psectrophotometric method at 600nm. The spectrophotometer measures turbidity directly.

Range of pH

The ability of the actinomycetes isolate to grow at various range of pH (7-9) in medium was tested.

Procedure: The actinomycetes isolation broth was prepared and poured into three beakers, the pH was then measured using a pH meter and adjusted to 7,8 and 9 respectively by the addition of 1Molar NaOH or 1 Molar HCL while shaking it. It was then sterilized at 121°C/15 minutes and 5 ml of it poured into each of the Bijou bottle. 0.1ml of 0.5 McFarland of the actinomycete culture was poured into the bijou bottle and incubated at 28°C for 92 hours (4 days) after which the turbidity

(microbial cell numbers) was estimated using the spectrophotometric method at 600nm.

Physiological Characterization Temperature

The ability of the isolate to grow at various temperatures (20 to 40°C) was evaluated to determine the optimum growth temperature of the isolated actinomycetes.

Procedure: The actinomycetes isolation broth was prepared and 5 ml of it taken into each of the bijou bottle, 0.1ml of 0.5 McFarland of the actinomycetes broth was poured into the bijou bottles and incubated differently at the temperatures of 20°C, 25°C, 300C, 35°C and 40°C respectively for 92w hours (4 days) after which the turbidity (microbial numbers) was estimated using the spectrophotometric method at 600nm. The spectrophotometer measures turbidity directly.

Range of pH

The ability of the actinomycetes isolate to grow at various range of pH (7-9) in medium was tested.

Procedure: The actinomycetes isolation broth was prepared and poured into three beakers, the pH was then measured using a pH meter and adjusted to 7, 8 and 9 respectively by the addition of 1 Molar NaOH or 1Molar HCL while shaking it. It was then sterilized at 121°C/15 minutes and 5 ml of it poured into each of the Bijou bottle. 0.1ml of 0.5 McFarland of the actinomycete culture was poured into the bijou bottle and incubated at 28°C for 92 hours (4 days) after which the turbidity (microbial cell numbers) was estimated using the spectrophotometric method at 600nm.

Statistical Analysis

The results obtained from the study was presented using tables while relevant data were statistical analyzed with the use of Analysis of Variance (ANOVA) on SPSS version 22.

RESULTS

Table 1: Cultural, Morphological and Biochemical Characterization of Actinomycete species from Enyibichiri Community of Ikwo L.G.A, Ebonyi State

		Cultural Characteristics		Microscopic cs Characteristics		Biochemical Characteristics				Carbohydrate Utilization											
SN	Sample code	AMC	RSP	MP	SCM	GS	AFS	CTT	OX	CAT	IND	MR	VP	UR	DX	MAL	SUC	MAN	FRU	ST	Probable species
1	EN 1	White	0	0	Spiral	+	-	+	-	+	+	-	+	+	+	+	+	-	+	+	Streptomyces spp 1
2	EN 2	Gray	0	0	B/S	+	-	+	+	+	+	-	+	+	+	+	+	-	+	+	Streptomyces spp 2
3	EN 3	W/G	0	1	Sprial	+	-	+	+	+	+	-	+	+	+	+	+	+	+	+	Streptomyces spp 3
4	EN 4	G/W	1	0	SR	+	-	+	+	+	+	-	+	+	+	+	+	+	+	+	Streptomyces spp 4
5	EN 5	G/W	1	1	Sprial	+	-	-	-	+	+	-	+	+	+	+	+	+	+	+	Streptomyces spp 5
6	EN 6	White	0	1	Spiral	+	-	+	+	+	+	-	+	+	+	+	+	+	+	+	Streptomyces spp 6

Key: EN = Enyibichiri, AMC = Aerial Mass Colour, RSP = reverse side pigment, MP = Melanoid production, SCM = spore chain morphology, GS = gram stain, AFS = acid fast stain, CIT = Citrate, OX = oxidase, CAT = catalase, IND = indole, MR = Methyl red, VP = Voges-Proskauer, UR = urease, DX = dextrose, MAL = maltoase, SUC = sucrose, MAN = mannitol, FRU = fructose, ST = starch, W/G = white and gray, G/W = gray and white, B/S = biverticillus-spiral, SR = STRAIGHT Rectus.

75

Table 2: Cultural, Morphological and Biochemical Characteristics of Actinomycete species from Noyo Community of Ikwo L.GA, Ebonyi State.

		Cultural Characteristics		ics	Microscopic Characteristics		Biochemical Characteristics			Carbohydrate Utilization											
SN	Sample code	AMC	RSP	MP	SCM	GS	AFS	CTT	OX	CAT	IND	MR	VP	UR	DX	MAL	SUC	MAN	FRU	ST	Probable species
1	NO 1	White	1	1	Spiral	+	-	+	-	+	+	-	+	+	+	-	+	+	+	+	Streptomyces spp 1
2	NO 2	Yellow	0	0	Spiral	+	-	+	-	+	+	-	+	+	+	+	+	+	+	+	Streptomyces spp 2
3	NO 3	Gray	0	1	Sprial	+	-	+	-	+	+	-	+	+	+	+	+	+	+	+	Streptomyces spp 3

Key: NO = Noyo, AMC = Aerial Mass Colour, RSP = reverse side pigment, MP = Melanoid production = spore chain morphology, GS = gram stain, AFS = acid fast stain, CIT = citrate, OX = oxidase, CAT = catalase, IND = indole, MR = Methyl red, VP = Voges=Proskauer, UR = urease, DX = dextrose, MAL = naltose, SUC = sucrose, MAN = mannitol, FRU = fructose, ST = starch.

Table 3: Antimicrobial activity of *Streptomyces* species from Enyibichiri against the clinical isolates

			Clinical Isolates	and Diz (mm)		
S/N	Species code	Staphylococcus aureus	Escherichia coli	Pseudomonas aeruginosa	<i>Klebsiella</i> species	Enterobacter species
1	SSE 1	NI	NI	10	20	20
2	SSE 2	NI	26	NI	NI	NI
3	SSE 3	10	17	12	NI	25
4	SSE 4	NI	20	NI	30	15
5	SSE 5	NI	9	NI	15	NI
6	SSE 6	NI	NI	3	NI	NI

KEY: NI Inhibition, SSE = Streptomyces spp, Enyibichiri IZ = Inhibition zone, mm = millimeter

Table 4: Antimicrobial activity of *Streptomyces* species from Noyo against the clinical isolates

	Clinical Isolates and Diz (mm)									
S/N	Species code	Staphylococcus aureus	Escherichia coli	Pseudomonas	Klebsiella	Enterobacter				
				aeruginosa	species	species				
1	SSE 1	22	NI	NI	NI	NI				
2	SSE 2	NI	18	NI	22	12				
3	SSE 3	15	NI	19	NI	NI				

KEY: NI Inhibition, SSN = Streptomyces species, Noyo, IZ = Inhibition zone, mm = millimeter

Table 5: Inhibition Zone Diameter (IZD) Produced by *Streptomyces* species from Enyibichiri community and the commonly used Antibiotics against the clinical isolates (mm)

us	ca minibiones against	. CIIC CII.	iiicai is	oraces ((111111)								
		Strep	otomyc	es fron	ı Enyib	ichiri		Conventional Antibiotics					
SN	Clinical isolates	SSE 1	SSE 2	SSE 3	SSE 4	SSE 5	SSE 6	Ak(30µg)	Ak (15µg)	FOX (30μg)	B(10µg)	AMC(30µg)	OFX (30μg)
1	Staphylococcus aureus	7	NI	25	7	NI	NI	20	NI	23	35	NI	19
2	Escherichia coli	NI	NI	NI	NI	12	NI	15	12	30	NI	NI	7
3	Pseudomona aeruginosa	NI	8	NI	NI	NI	NI	23	7	NI	NI	NI	NI
4	Klebsella species	10	NI	NI	15	7	NI	19	NI	NI	NI	10	10
5	Streptococcus spp	NI	NI	NI	7	NI	7	24	NI	NI	NI	10	NI
6	Proteus spp	NI	NI	NI	NI	NI	NI	NI	9	11	NI	NI	10
7	Enterobacter	10	NI	8	7	NI	NI	24	10	20	30	NI	NI

Key: SSE = *Streptococcus* species, Enyibichiri, E = Erythromycin (15μg), OFX = Ofloxacin (5μg), B = Bacteriacin (10μg), AM = Amoxicillin Clavulanic Acid (30μg), FOX = cefoxitin (30μg), AK = Amikacin (30μg), NI= Ni Inhibition

www.idosr.org Onwa and Elom

Table 6: inhibition zone diameter (IZD) Produced by Streptomycess from Noyo and antibiotic against the clinical isolates (mm)

		Strepto Enyibio		From			Convention			
SN	Clinical isolate	SSN 1	SSN 2	SSN 3	AK(30μg)	E(15µg)	FOX(30µg)	B(10µg)	AMC(30µg)	OFX(30µg)
1	Staphylococcus aureus	15	NI	NI	20	NI	23	35	NI	19
2	Escherichia coli	NI	7	NI	15	12	10	NI	NI	7
3	Pseudomonas aeruginosa	7	NI	9	23	7	NI	NI	NI	NI
4	Klebsiella species	NI	15	NI	10	NI	NI	NI	10	10
5	Streptococcus spp	NI	NI	NI	24	NI	NI	NI	10	NI
6	Proteus spp	NI	NI	11	NI	9	11	NI	NI	10
7	Enterobacter	NI	7	NI	24	10	20	30	NI	NI

Table 7: Growth of *Streptomyces* species from Enyibichiri at different Temperatures.

	ic it dromail or b	c. ep co, ec	o opecico mom zmyron		re rempere	
	Streptomyces		Cell Number (cells/n	n) at Different	Temperati	ıres
SN	Species	20°C	25°C	30°C	35°C	40°C
1	SSE 1	$1.2X10^{7}$	$8.39X10^{7}$	$5.99X10^{8}$	$1.05X10^{8}$	$9.68X10^{7}$
2	SSE 2	$7.19X10^{7}$	1.52X10 ⁸	$5.9X10^{8}$	$1.07X10^{8}$	$9.92X10^{7}$
3	SSE 3	$7.38X10^{7}$	$1.44X10^{8}$	$7.26X10^{8}$	$6.19X10^{8}$	$3.79X10^{8}$
4	SSE 4	$2.85X10^{7}$	1.08X10 ⁸	$4.74X10^{8}$	$9.94X10^{7}$	$8.98X10^{7}$
5	SSE 5	$7.39X10^{7}$	$1.54X10^{8}$	$2.11X10^{8}$	$1.6X10^{8}$	$1.52X10^{8}$
6	SSE 6	$6.98X10^{7}$	$1.5 X 10^{8}$	$7.7X10^{8}$	1.26X10 ⁸	$1.17X10^{8}$

KEY: SSE = *Streptomyces* species from Enyibichiri

Table 8: Growth of *Streptomyces* species from Noyo at different Temperatures.

	Streptomyces	Ce	ell Number (cells	/m) at Different	Temperatu	res
SN	Species	20°C	25°C	30°C	35°C	40°C
1	SSE 1	$3.44X10^{7}$	$9.12X10^{7}$	$1.14X10^{8}$	$1.11X10^{8}$	$8.09X10^{7}$
2	SSE 2	$6.75X10^{7}$	$1.47X10^{8}$	$6.17X10^{8}$	4.97X10 ⁸	$4.1X10^{8}$
3	SSE 3	$2.2X10^{7}$	$1.02X10^{8}$	$6.85X10^{8}$	$1.14X10^{8}$	$1.05X10^{8}$

Key: SSE = *Streptomyces* species from Noyo

Table 9: Growth of *Streptomyces* species from Enyibichiri at different pH .

		Cell Number (cells/m) at different pH							
S/No	Streptomyces species	7	8	9					
1	SSE 1	$1.41X10^{8}$	$8.57X10^{8}$	$1.36X10^{8}$					
2	SSE 2	1.28X10 ⁸	1.48X10 ⁸	$1.13X10^{8}$					
3	SSE 3	$1.33X10^{8}$	$1.59X10^{8}$	$1.31X10^{8}$					
4	SSE 4	1.27X10 ⁸	$1.40X10^{8}$	1.25X10 ⁸					
5	SSE 5	$1.04X10^{8}$	$1.23X10^{8}$	$1.02X10^{8}$					
6	SSE 6	1.27X10 ⁸	$1.4X10^{8}$	$1.17X10^{8}$					

KEY: SSE = *Streptomyces* species Enyibichiri

Table 10: Growth of Streptomyces species from Enyibichiri at different pH.

Cell Number (cells/m) at different pH									
S/No	Streptomyces species	7	8	9					
1	SSE 1	$1.3X10^{8}$	$6.81X10^{8}$	$1.21X10^{8}$					
2	SSE 2	$1.20X10^{8}$	$1.37X10^{8}$	$1.17X10^{8}$					
3	SSE 3	$1.31X10^{8}$	$4.26X10^{8}$	$1.9X10^{8}$					

KEY: SSE = *Streptomyces* species Noyo

Antibiotics are the most important bioactive compounds for the treatment of infectious diseases. Thus, due to the burden for high frequency of multidrug resistant pathogens in the world, there has been increasing interest for searching effective antibiotics form soil Actinomycetes in diversified ecological

niche [4].

The research revealed that the dominant antibiotics producing Actinomycetes in the soil were the *Streptomyces* species (tables 1 and 2). This is consistent with the work of [3] [4] which stated that the richest source of antibiotic producing Streptomyces species is the soil. The presence of Streptomyces species in the soil as found in this study is also in line with the work of Stephen Kugbere (2014) which stated that 1g of soil when plated, harbours up to 10 billion microorganisms, of which about 2.15x106 CFU/g (dry accounted for by weight) are Streptomyces species.

This study observed a range of o to 25 mm inhibition zone diameter while [14] [15] reported an inhibition zone Diameter (IZD) of 0 to 12mm and 0 to 18mm respectively. [23] reported 0 to 40mm (including the combination effect of extracts).

Absence of clear zones found in some of the Actinomycetes isolates during final examination of Mueller Hinton agar plates (table 2), shows that no antibiotics were produced in such colonies. Although, the other isolates were able to inhibit the growth of indicator bacteria, however the inhibition was not observed in all tested indicator bacteria. This therefore means that there was a low secretion of antibiotics by such Actinomycetes isolates. A probable explanation for these results could be that the culture method used in this study, did not provide ideal conditions that should have enabled the growth of large numbers Actinomycetes and secretion of high amounts of antibiotics. Furthermore, experiments with this technique (culturedependent methods) are quite limited in broad population detecting the uncultured microorganisms in the soil ecosystem [8].

In all aspects, strain SSE showed broad spectrum of antimicrobial activity and it inhibits all groups of microbes used in our study.

This work recorded activity against E. coli and Pseudomonas spp. contrary to other reports that observed total resistance to the antimicrobial agents Streptomyces broth by gram negative bacteria. [12] observed that antimicrobial agents were resisted by gram negative bacteria (E. coli and P. aeruginosa) and therefore stated that the reason for different sensitivity between gram positive and gram negative bacteria could explained to the morphological differences between these microorganisms, gram negative bacteria polysaccharide having outer an structural membrane carrying the lipopolysaccharide components. This makes the cell wall impermeable to lipophilic solutes, but the gram positive showed more susceptibility having only an outer peptidoglycan layer which is not an effective permeability barrier.

The antimicrobial agents showed less activity when compared to the commonly used antibiotics. The less activity of antimicrobial agents when compared to commonly used antibiotics was also reported by [5] [6]. It is also necessary to note that the antimicrobial drugs in the open market have undergone the highest possible purification while the supernatant from the broth culture of the *Streptomyces* used in this study is yet to be subjected to such series of purification and concentration.

The optimum growth (table 7and 8) of *Streptomyces* species that showed antimicrobial activity against the test isolates was recorded at the temperature of 30°C. This agreed with the work of [17], [18] [19] that recorded peak growth for antibiotic producing, *Strptomyces* species at the temperature of 30°C.

It was also observed that optimum growth occurred at pH 8 (table 9 and 10). This is consistent with the work of [6], [7] [8] that recorded optimum growth at pH 8.

The antimicrobial agents showed less activity when compared to the commonly used antibiotics. The less activity of

antimicrobial agents when compared to commonly used antibiotics was also reported by [21] [22]. It is also necessary to note that the antimicrobial drugs in the open market have undergone the highest purification possible while supernatant form the broth culture of the Streptomyces used in this study is yet to be subjected to such series of purification and concentration.

The optimum growth (table 7 and 8) of species Streptomyces that showed

CONCLUSION

Till date there is no scientific report on Actinomycetes producing antimicrobial compounds from Ikwo Local Government Area of Ebonyi State, Nigeria, Based on the results obtained from this work, it can be seen that the soil samples from Ikwo have proven to be an eminent source of

fight against antibiotics pathogens. REFERENCES 1. Abebe, B., Feleke, M and Berhanu, production by

- A (2013). Isolation and screening of antibiotic producing microbes from some soil's. Asian Pacific Journal of Tropical Disease, **3**(5): 375-381.
- 2. Aboshadi, M., Sidkey, N. M and Al-Mutrafy, A. M (2010). Antimicrobial agent producing microbes from some soil's rhizosphere. Journal of American Science, 6(10): 915-925.
- 3. Aifuzzaman, M., Khatum, M. R and Rahman, H (2010). Isolation and screening of Actinomycetes from Sunderbans soil for antibacterial Journal activity. African *Biotechnology*, **9:** 4615-4619.
- 4. Augustine, C. E., Gurtler, Pedersen, R., Molin, S and Wilkins, K (2004). Volatile metabolites from Actinomycetes. Journal Agriculture and Food Chemistry, 9: 2615-21.
- 5. Babalola, O. O., Kirby, B. M., Le-Roes-Hill, M., Cook, A. E., Cary, S. C. Burton, S. G and Cowan, D. A (2009). Phylogenetic analysis of Actinobacterial populations with Antarctic associated valley mineral soils. Environmental *Microbiology*, **11**: 566-576.
- 6. Bently, F. B., Daniel, R. R and Shenbagarathai, R (2002).Optimization of antibiotic

compounds antimicrobial from Actinomycetes. Therefore, isolation and screening of Actinomycetes from the area under study may contribute to the discovery of new antibiotics that could resistance

antimicrobial activity against the test

isolates was recorded at the temperature

of 30°C. This agreed with the work of [14],

[15] [16] that recorded peak growth for

antibiotic producing *Streptomyces* species

It was also observed that optimum growth occurred at pH 8 (Table 9 and 10). This is

consistent with the work of [8], [9] [10]

that recorded optimum growth at pH 8.

at the temperature of 30°C.

- marine Actinomycetes Streptomcyes species (K) D10S. International Journal of Pharmaceutical Science, **6**(2): 506-510.
- 7. Berdy, R (2005). Antibiotics: An Introduction. Roche scientific Service, Switzerland, pp 21.
- 8. Cheesbrough, M (2004). District Laboratory Practices in Tropical Countries. Part 2, 2nd edition. Cambridge University Press, New York, pp. 66-70.
- 9. Gurung, T. D., Sherp, C., Agrawal, V. P and Lekhak, B (2009). Isolation and characterization antibacterial Actinomycetes from soil samples of Kalapatthar Mount Everest Region. Nepal Journal of Science and Technology, 10: 173-
- 10. Hayakawa, I., AL-Joubori, B and Al-Khoury, R (1995). Testing of Production of Inhibitory Bioactive Compounds by Streptomycetes as Preliminary Screening Programs in UAE for Anti-Cancer and Anti-Bacterial **International** Drugs. **Journals** Current Microbioloav Applied Science, 4(3): 446-459.
- 11. Jeffrey, a. r., Abdolpour, Monsef-Esfahni, D., Mayilraj, S and Manhas, R. K (2008). Streptomyces

amritsarensis specie, nov., exhibiting broadspectrum antimicrobial activity. Antonie Van-Leeuwenhoek, 4(5): 943-949.

- 12. Kalyani, A. L. T., Ramya, S., Srarani, K. M and Annapurna, J (2012). Isolation of antibiotics producing Actinomycetes from marine soil samples. *International Journal of Current Pharmaceutical Research*, 4: 119-112.
- 13. Kekuda, T. R. P., Shobha, K. S and Onkarappa, R (2010). Fascinating diversity and potent biological activities of Actinomycete metabolites. *Journal of Pharmacology Research*, **3:** 250-256.
- 14. Kumar. N., Singh, R. K and Mishra, S. K (2010). Isolation and screening of soil Actinomycetes as sources of antibiotics active against bacteria. *International Journal of Micrpbiology Research*, **2:** 12-16.
- 15. Lingakumar, D., Arun, K., Suguna, S., Kumar, D and Dhevendaran, K (2011). Bioactive potential of *Streptomyces* against fish and shellfish pathogens. *Iran Journal of Microbiology*, 2(3): 157-164.
- 16. Mukesh, S., Pinki, D and Meennakshi, C (2014). Actinomycetes source, identification and their applications. International Journal of Current Microbiology and Applied Science, 3: 801-832.
- 17. Pandy, A., Imran, A., Kailash, S. B., Tanushiri, C and Vidvottuma, S (2011).Isolation and characterization of Actinomycetes and for evaluation soil of antibacterial activities Actinomycetes against pathogens. International Journal of Applied and **Pharmaceutical** Biology *Technology*, **2**(4): 384-392.
- 18. Shirling, F. B and Gottlieb, D (1966). Method for characterization of *Streptomyces* species. *International Journal of Systematic Biotechnology*, **16:** 312-340.
- 19. Sivercumer, L., Radakrishnan, M and Balagurunathan, R (2001).

- Antibiotic pigment from desert soil actinomycetes, biological activity, purification and chemical screening, *Indian Journal Pharmaceutical Science*, **71**: 499-504.
- 20. Sonia, M. T., Naceur, J and Abdennaceur, H (2011). Studies on the ecology of actinomycetes in an agriculture soil amended with organic residues: Identification of the dominant groups of Actinomycetes. World Journal of Microbiology and Biotechnology, 10: 10687-11275.
- 21. Sumbali, G and Mehrotra, R. S (2009). Principles of Microbiology. Tata McGraw Hill, New Delhi, pp 323.
- 22. Taiwo, S. S (2011). Antibiotic-resistant bugs in the 21st century: A public health challenge. *World Journal of Clinical Infectious Disease*, **1:** 11-16.
- 23. Thykaer, J and Nielsen, J (2003). Metabolic engineering of βetalactam production. *Metabolic Engineering*, **5:** 56-69.
- 24. Waksman, S. A., Schatz, A and Reynolds, D. M (2013). Production of antibiotic substrates by Actinomycetes. *Annals of the New York Academy of Sciences*, **1213**(1):112-124.
- 25. Van-Hop, D., Sakiyama, Y., Binh, C. T. T., Otoguro, M., Hang, D. T., Miyadoh, S., Luong, D. T and Ando, K (2011). Taconomic and ecological studies of Actinomycetes from Vietnam: isolation and genus-level diversity. *Journal of Antibiotics*, **10:** 2011-1040.