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ABSTRACT 

In this paper, we survey the constraint qualifications for nonlinear optimization 

problems. Although constrained nonlinear problems involve the Karush-Kuhn-Tucker 

(KKT) and associated optimality conditions, some problems do not satisfy the KKT 

conditions at a minimum point. We discuss some assumptions on constraint set which 

guarantees the KKT conditions to hold at a minimum point. We approach our study on 

constraint qualifications and their relationships with the concept of some cones and 

their polar.  
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INTRODUCTION 

Optimization Problems, which seek to 

minimize or maximize real valued 

functions, play important roles in the 

real world. They can be linear or 

nonlinear optimization problems. Many 

applications in engineering, 

management science and operations 

research can be formulated as nonlinear 

constrained optimization problems and 

nonlinear optimization problems are 

further classified into unconstrained 

and constrained optimization problems, 

[1]. 

[2] traced the history of optimization to 

an ancient princess named Dido which 

fled from the prosecution of her brother 

and a piece of land on the 

Mediterranean coast caught her fancy. 

She made a deal with the local leader, 

requesting him to cut a bull's hide into 

thin strips and tie them up to enclose as 

much land as one can with it. This 

problem in a modern day language later 

became a mathematical Isoperimetric 

problem in Calculus of Variations which 

seeks to find the length that can enclose 

the maximum area among all closed 

curves of given lengths. While [3] 

defined optimization as the action of 

finding the solution (product mix, 

allocation of resources, investments, 

etc.) that leads to the best result - the 

highest profit, or output, or return, or 

the one that achieves the lowest cost, or 

waste. Its model consists of an objective 

function and a set of constraints 

expressed in the form of a system of 

equations or inequalities. The objective 

function is a measure of effectiveness, 

often the cost or the profit. The model 

also includes decision variables and 

parameters. 

Generally, the existence of solutions for 

nonlinear optimization problems are 

guaranteed by the Existence Theorems 

but the optimal solutions for both the 

unconstrained and the constrained 

nonlinear optimization problems are 

verified by their first order necessary 

optimality conditions, their second 

order necessary and their second order 

sufficient optimality conditions. 

Although nonlinear optimization 

problems are classified into 

unconstrained and constrained 

optimization problems, only few 

problems can actually be formulated as 

unconstrained optimization problems in 

practice [4] but the conditions for the 

unconstrained nonlinear optimization 

problems are familiar to students and 

easy to solve. 

Methods for solving constrained 

nonlinear optimization problems are 

grouped into these two approaches: 

transformational which convert 

constrained nonlinear optimization 
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problems into another form before 

solving it -well-known methods include 

penalty methods, barrier methods, 

Lagrangian methods, and sequential 

quadratic programming methods. Non-

transformational approach, work on 

original problems directly by searching 

through its feasible region for the 

optimal solutions, [5].There are two 

types of constrained nonlinear 

optimization problems: those subject to 

equality constraints and those subject to 

inequality constraints. Optimality 

conditions for equality constrained 

optimization problems involve the 

Lagrangian and associated optimality 

conditions. The solution of problems 

with inequality constraints and/or 

variable sign restrictions relies on Kuhn-

Tucker theory, [6] However, some 

constrained nonlinear optimization 

problems do not satisfy the Karush-

Kuhn-Tucker (KKT) conditions at the 

minimum point. The concept of 

constraints qualifications therefore 

examines the conditions that constraints 

must satisfy in order to ensure that the 

minimum point satisfies the (KKT) 

conditions  [7]. This condition 

obviously, guarantees the existence of 

Lagrange’s multipliers which transform 

the constrained nonlinear optimization 

problems into unconstrained nonlinear 

optimization problems. 

[8] did a study on some Mathematical 

Programs with Vanishing Constraints 

which had a number of important 

applications in structural and topology 

optimization, but typically does not 

satisfy standard constraint 

qualifications like the linear 

independence and the Mangasarian-

Fromovitz constraint qualification. The 

result therefore stated that the Abadie 

constraint qualification is also typically 

not satisfied, whereas the Guignard 

constraint qualification holds under 

fairly mild assumptions for a particular 

class of optimization problems. [9] 

studied the Constant-Rank Condition 

and Second-Order Constraint 

Qualification. It adopted the condition 

for feasible points of nonlinear 

programming problems as was defined 

by and also referred to its proof that the 

constant-rank condition is a first-order 

constraint qualification. [10] also proved 

that the constant-rank condition is also 

a second-order constraint qualification 

and defined other second-order 

constraint qualifications. It concluded 

that constant-rank constraint 

qualification seems to be a useful tool 

for the analysis of convergence of some 

nonlinear programming methods, 

proved that CRCQ is in fact a strong 

second-order constraint qualification 

and also proved that, under this 

constraint qualification, a minimum 

point verifies the strong second-order 

necessary condition for any KKT 

multiplier. 

In this paper, we investigate five (5) 

constraint qualifications and the 

relationships between them, and 

approach the Guignard and Quasi-

regularity Constraint Qualifications with 

the concept of some important cones, 

Linear Independence and Mangasarian-

Fromovitz’s Constraint Qualifications 

with the concept of the regularity of  

and the Slater’s Constraint 

Qualifications by the concept of the 

linearity of  and the convexity of  and 

show that the Guignard Constraint 

Qualification (GCQ) is the weakest 

constraint qualification while the Linear 

Independence Constraint Qualification 

is the strongest constraint qualification. 

 

PRELIMINARIES 

Consider the nonlinear constrained optimization problem  

,                                                                                                 

                                         (1)  ,  . 

Where and  f: ,  are continuously 

differentiable.The feasible set . Given that , the 
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classical Karush-Kuhn-Tucker (KKT) conditions 

 

 

 

Although Karush-Kuhn-Tucker (KKT) 

conditions are necessary conditions for 

a given point to be the solution of a 

given constrained nonlinear 

optimization problem, some problems 

do not satisfy the (KKT) conditions at 

the minimum point.  

We state the theorem of KKT 

 

Theorem 1 (Karush-Kuhn-Tucker (KKT) Theorem):  

Let  be a local minimum of , subject to , ,  

, g:  and m, p . Assume that  is a regular point. Then, there 

exist   and   

such that  

                 

                                                                                                                                                                  

            

where  and  are called Lagrange multipliers and KKT multipliers respectively. 

 

See Chong and Zak [3] for the proof 

Although Karush-Kuhn-Tucker (KKT) 

conditions is very important in solving 

nonlinear inequality constraint 

problems,some problems do not satisfy 

the (KKT) conditions at the minimum 

point. 

 

Example 1: Consider the nonlinear constrained optimization problem 

                                                                (3) 

 

                                                                                                   

                         

We note that the solution of problem (3) 

is but the KKT conditions are 

not satisfied at that point.  

The problem of our study therefore is to 

investigate some assumptions on the 

constraints sets which guarantee the 

KKT conditions to be satisfied at the 

minimum point. Such assumptions are 

called constraint qualifications.

 Let , the active set of the inequality constraint  at  is the set  

 

  .       (4)               

Equality constraints  are always considered to be active. 

Definition 1 (Convex Set): A set is a convex set if for every 

 ,   

Definition 2 (Cone): A set is a cone if for all ,  for any .  

Definition 3 (Polar of a set): Given a set , the polar of S denoted by 
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We should note that for any ,  is a cone and  and the equality holds 

if  is a closed convex cone as stated below. 

Lemma 1 (Farkas’ Lemma): Let  be a closed convex cone. Then, . 

Proof; 

 Let, , we have , Let  

Conversely, Let and  , . Taking 

 and , we obtain  

and since , we have   and 

. 

Definition 4 (Feasible direction): Let ,  is a feasible direction at  with 

respect to  if   such that, .  

Definition 5 (Cone of feasible direction): The cone of feasible direction of at  is the 

set  for some .  

Definition 6 (Cone of descent direction): Given a function f:  the cone of 

descent directionat defined by ,  for 

some . 

Lemma 2:      Let f:  be a differentiable function at . Then,                                  

 , for all .                                                                                         

 If  satisfies , then . We denote                                        

                                                                                     

(5) 

Proof: See Endris [5]                     

Definition 7 (Feasible Sequence): Let ,  is called a feasible sequence if 

 for  very large.Definition 8 (Linearized Cone): Let , the 

analytic tangent cone is defined by 

                                                            

                                                                                                

(6) 

Definition 9: Let , the cone 

           (7) 

Lemma 3: For any ,  is a closed convex cone 

Proof: See Endris [5] 

Lemma 4: For any ,  

Proof: From Lemma 1 and Lemma 3, we prove that .  

Consider  and given, , we have 

                      .                      (8) 

Since  and by the definition,  , . Hence, . 

Conversely, consider, . By definition, , . Since,  

and belongs to ,  it implies that . Similarly, 

since, , , it implies that . 
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We discuss the linear approximation of the feasible set with the concept of tangent 

direction.  

Definition 10 (Tangents): A vector  is called a tangent to the feasible set  if 

there exists a feasible sequence , and a nonnegative sequence  such that 

                                                                                                             

(9) 

i.e., there exists  such that  .  

Definition 11 (Tangent Cone):Tangent cone denoted by (  is the set of all tangents 

. 

Lemma 5:  For any , (  is closed 

Proof: See Rodrigo [11] 

Lemma 6: For any , ( . 

Proof: Let ( , and let ,  that give : 

                                                                                                        

(10)                      

We want to show that  

From the smoothness of  and  , 

                                                                        

(11) 

                            (12) 

 implying that  

Similarly, 

(13) 

                       

(14) 

implying also that   

Thus, . 

The converse of the above lemma is false from the following counter example; 

Example 2: Consider the function  and  defined by  

 and  and the points . We have  

(  and . 

Thus, ( . 

OPTIMALITY CONDITIONS AND 

CONSTRAINT QUALIFICATIONS    

We prove the KKT theorem employing 

the weakest constraint qualification and 

discuss other ones that can be easily 

verified.  

 

Lemma 7 (Fundamental Necessary 

Condition): If  is a local minimum of 

problem (1),  

 then 

 

(                                                                                      

Proof: Suppose there exist (  with  Choose; ,  that give 

the limiting direction . By the Extended Mean Value Theorem,            

                        (15) 



 

www.idosr.org                                                                                                          Offia and Efor 

 

43 
IDOSR JOURNAL OF SCIENTIFIC RESEARCH 4(1) 38-46, 2019. 

 

 

 

which yields   

 

for all sufficiently small. This is a contradiction by the local minimum of . 

 

RESULTS 

Theorem 2:  (Karush-Kuhn-Tucker 

(KKT) Conditions in terms GCQ): Let 

 be a local minimum of (1) such 

that the Guignard Constraint 

Qualification (GCQ) holds at . Then, 

there exist   and  such 

that 

 

                                                                          (16) 

 

Proof: Suppose that  is the local minimum point of problem (1). By the Lemma 7, 

we have 

 ( .  

Using the hypothesis and Lemma 4, we obtain                                                                                                   

.                                                                       

(17) 

Thus, there exist  and , , such that                            

                                                           

(18) 

 

Defining  and . 

 

Quasi-regularity Constraint Qualification 

The Quasi-regularity Constraint Qualifications also called Abadie Constraint 

Qualification (ACQ) holds at  when ( . We note that this condition 

trivially implies that, . (19) 

 

Example below shows that the above conditions are not equivalent. 

Example 3: Consider the function  and  defined by  

 

 and  and the points . 

( . But 

. 

 

We define some other useful constraint qualifications; 

Definition 12: Linear Independence Constraint Qualifications (LICQ): Suppose 

that , and its active sets   and  the Linear Independence 

Constraint Qualifications (LICQ) holds if the gradient vectors  and , 

 are linearly Independent. 

Definition 13: Mangasarian-Fromovitz’s Constraint Qualifications (MFCQ): The 

Mangasarian-Fromovitz’s Constraint Qualifications (MFCQ) holds at  when the equality 

constraint gradients are linearly independent and there exist a vector  such that 
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Definition 14: Slater’s Constraint Qualifications: Consider the nonlinear optimization 

problem (1), the Slater’s constraint qualifications holds if  is linear,   is convex and 

there exists  such that  

 . 

 

Relationships between Constraint Qualifications 

For us to establish our main theorems on the relationship between the constraint 

qualifications given above, we state the following lemma:  

Lemma 8: Let  such that the Mangasarian-Fromovitz’s Constraint Qualifications 

(MFCQ) holds at . Then, there exist  and a -curve  such that 

 for all ,  and . 

Proof: Let  be given by   for all 

where  denotes the Jacobian of  at . The nonlinear equation 

 has the solution  with and the latter 

matrix is non-singular (even positive definite) due to the linear independence of the 

vectors . The implicit function yields a -function  

such that ,  and for all 

. Hence, we have                                                               

.                                                       

Again, put  for all . Reducing  if necessary, 

 has all the desired properties: Obviously, , ,  

and  for all .                                                                                     

Furthermore, by continuity  for all  and  sufficiently small             

For  we have  and and 

hence  for all  sufficiently small.  

Relationship between the LICQ and MFCQ 

Theorem 4: Suppose that  satisfies the Linear Independence Constraint 

Qualifications (LICQ), then  also satisfy the Mangasarian-Fromovitz’s Constraint 

Qualifications (MFCQ).  

Proof: Suppose without loss of   generality that . Consider the matrix                                                                             

and  given by , for all 

 and , for all . Since the rows of  are linearly 

independent, the system  has a solution. Let  be a solution. Then,                                                                                                         

 and , for all .                                                

Relationship between MFCQ and ACQ 

Theorem 5 If satisfies the Mangasarian-Fromovitz’s Constraint Qualifications 

(MFCQ) then  satisfies the Abadie Constraint Qualification (ACQ). 
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Proof: From Lemma 6, recall that for any , ( . Let  and  

given by MFCQ (  such that  

 for all , 

        

.Put  for . Then for all  we have  for all 

,  for all .                                             

We claim that this implies (  for all : By Lemma 7, there exists a -

curve  such that  for all ,  and . 

For an arbitrary sequence  and  we hence infer that  and thus                         

   (            (20)                                                                       

And since (  is closed, this implies 

 ( .                                        

Relationship between ACQ and GCQ 

Theorem 6 If  satisfies the Abadie Constraint Qualification (ACQ), then,  

satisfies the Guignard Constraint Qualification (GCQ). 

Proof: This follows immediately from the definition. 

 Relationship between Slater’s CQ and ACQ 

Theorem 7:  If Slater’s condition holds, then (  for all, .                                                                                        

 Proof: Using Lemma 6, it suffices to prove that ( . Consider an arbitrary 

direction  and  given by the Slater condition. Define,  . By the 

convexity of  we have                                                                                                                                 

Thus, for , . Given  

define .                                                                                                             

We want to prove (  for all .                                                                           

For , we have  and . Consequently, . 

Therefore, there exists , with  such that . Taking a 

sequence, , with  and , define 

 .                                                                                  

(21) 

Thus,                                                                                       (22)                                                                                                      

For . By the continuity of ,  for all  sufficiently large. To 

conclude that (  it is enough to show  for all  sufficiently large         
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Since , . Furthermore, . Consequently, 

. Thus, , since . So, ( , 

which implies ( , since (  is a closed set. 

CONCLUSION 

In conclusion, we observe that the 

Guignard Constraint Qualification (GCQ), 

 which follows 

trivially from Abadie Constraint 

Qualification (ACQ),  

(  is the weakest constraint 

qualification while the Linear 

Independence Constraint Qualifications 

(LICQ) is the strongest constraint 

qualification at  . 
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