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ABSTRACT 

This paper, first, recall some strong implications of convex functions such as continuity and 

differentiability. It discusses Characterizations of convex functions in terms of first and second 

derivatives. It considers the roles of convexity in optimization problems in a finite dimensional space. 

Convex problems with inequality constraints are discussed and Kuhn and Tucker condition was 

applied to a real life problem in a small scale firm.  
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INTRODUCTION 

      Optimization in general, is a mathematical procedure for determining optimal allocation of 

scarce resources, according to [1]. Convex optimization problem is a problem in which the objective 

functions and the constraint sets are convex. It has found practical applications in almost all 

sectors of life such as Mathematics, engineering, economics etc. This is because  most algorithms 

that are used  in computing the minimum point or maximum point if they exist of a function are 

point  to point maps and therefore the solution they generate are extreme point. The attractiveness 

of convexity for optimization theory arises from the fact that when an optimization problem meets 

suitable convexity conditions, the same first order necessary optimality conditions we know to be 

local optima also become sufficient for global optima. Convexity has strong implications for 

continuity and differentiability such as, it must be continuous everywhere on the interior of its 

domain and also differentiable.   

      Convex constrained optimization problems are of two forms, equality and inequality 

constrained problems. Many authors such as, Efor, in [1], Robert [2], have discussed equality and 

inequality constrained problem without convexity respectively. Edward and et al in [3] discussed 

optimization in small scale Business         

      In this paper, we focus on characterizations of convex functions in terms of their first and 

second derivatives and the role of convexity to optimization theory. The paper, equally apply 

Karush-Kuhn and Tucker (KKT) conditions to a convex revenue problem with inequality constraints. 

   We recall some definitions in convexity. 

 (i). A set  is said to be convex if the convex combination of any two points say  is in . 

           Intuitively,  is convex if the line segment joining two points,  and  is completely 

contained         in , that is 
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  (ii) A function  is said to be convex if  

         . 

 

If the inequality in the above definition is strict, and, , then the function is called a strict 

convex function. 

If the inequality is reversed then  is called a concave function  

Geometrically, a function is said to be convex if the epigraph of  is a convex set, 

 is a convex set  

      (iii) Revenue is the amount of money realized during a specific period of transaction, including 

discounts and deductions from returned goods/products .See [3] for more detail on revenue 

optimization. 

CONVEX OPTIMIZATION MODEL WITH INEQUALITY CONSTRAINT 

  The model is posed as  

Min  

Subject to  

Where,    (p) 

 is open and  where   and   are convex. 

 We recall some strong implications of convexity such as continuity and differentiability. 

CONTINUITY AS AN IMPLICATION OF CONVEXITY 

In this section, we discuss continuity as implication of convexity. The result here, according to 

Sundaram, [4] shows that a convex function must be continuous everywhere on the interior of its 

domain. 

Theorem 2.1:  Let  be a convex function. Then if  is open,  is continuous on . If  is 

not open it is continuous on the interior of . The proof is according to [4] and [5] 

Proof  

We prove that if  is open and     is convex on , then  must be continuous  on  since int  is 

always open for any set  and since the convexity of  on  also implies its convexity on int , 

this result will also prove that even if  is not open,  must be continuous on the interior of  so 
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suppose  is open and  Let  for all . Since  is open, there is  such that 

 pick  such that  Let  be defined by: 

A . Pick  so large that for all , we have  Since  ,it 

implies that such a , exists.  

Then, for all  there is  A such that  for some   

Since,  and . It is the case that . 

Therefore by the convexity of  

. 

Taking limits, we have  

                      (2.1) 

Secondly, it is also that for all  there is  A and  such that 

. Exploiting convexity of , we have  

 ). 

Since  must go to  as  

Taking the limits, we have  

                         (2.2) 

Since we have established that  

, we conclude that,  

 

Remark: The continuity of  could fail at the boundary points of  

Example 1.1 

Define   by 

 

Here  is concave on  but discontinuous at the boundary points 0 and 1. 
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DIFFERENTIABILITY AS AN IMPLICATION OF CONVEXITY: 

As with continuity, the assumption of convexity also caries strong implications for differentiability 

of the function involved. Consider the following definition of differentiability of . 

Definition 2.1: Let  be a nonempty set in  and let . Then  is said to be differentiable 

at  if there exist a vector  called the gradient vector and a function  

such that 

, 

 for each ,  

 

Definition 2.2: Let  be a nonempty set in  and let . Then  is said to be twice 

differentiable at  if there exist a vector  and  symmetric matrix , 

called the Hessian matrix, and a function   such that, 

 

, for each K, The function  is said to be twice differentiable on the open 

set  if it is twice differentiable at each point in , where  is given by   

CHARACTERIZATIONS OF CONVEX FUNCTIONS IN TERMS OF ITS DERIVATIVES 

In this section, we characterize convex functions in terms of its first and second derivatives. 

The theorem below gives a complete characterization of convexity of an everywhere differentiable 

function  using its first derivative.  

Theorem 3.1: Let  be an open and convex set on , and let  be differentiable on  

Then  is convex on  if and only if 

  

Proof, 

Suppose  is convex on  we show that  holds. 

by definition of convex function, we have 

                           (3.1) 
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Therefore  

                 

Conversely,  

Suppose                                      (3.2) 

We show that  is convex. 
 

Let  

Set  

                                               (3.3) 

Now consider the pairs  and  

From, eq(3.2), we have  

                                                      (3.4) 

Again  

                                                      (3.5) 

Form eq (3.3) 

 

                                (3.6) 

                                 (3.7) 

                                (3.8) 

Adding (3.7) and (3.8) we have 

 

                                  (3.9) 
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But,   

Substituting  in (3.9), we have,  

        

Hence,  is convex. 

We now give the second characterization in terms of its derivatives.                                             

Theorem 3.2: Let  be a nonempty open convex set in  and let  be a  function on . 

Then  is convex if and only if the Hessian matrix is positive semi-definite at each point in . 

Proof:  

Suppose that  is convex and . We show that 

 , 

for each . 

 

Since  is open, then for any given  for  sufficently small.                                                            

By convexity and differentiability of , we have 

                             (3.10) 

and 

                         (3.11) 

Substituting (3.11) in (3.10), we have                                                                                                                                        

                                                                              (3.12) 

Dividing (3.12) by  and let . We have that,  

. 

Conversely, 

Suppose that the Hessian matrix is positive semi-definite at each point in  

Consider  and  in . Then, by the Tailors theorem, we have 

                                  (3.12) 
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Where  for some, . Note that and hence, by assumption,  

is positive semi-definite. Thus, 

, 

 from (3.12), we conclude that, 

  

Since the above inequality is true for each   is convex. 

Example 1.2: Consider a function  defined by  

. 

We verify the convexity or convenient form. 

 

In order to check whether the Hessian matrix  is positive semi-definite or negative semi-definite or 

neither, we compute the eigen-value by solving the following system. 

det  

. 

The solutions of this equation are 

   

since,  are negative, then  is negative semi-definite and hence  is concave. 

ROLE OF CONVEXITY IN OPTIMIZATION PROBLEMS 

The role of convexity in optimization theory is very vital in the sense that it gives validity for global 

optima. In a convex minimization problem, any critical point of  is a global minimizer of  and if  

is strictly convex and admits a solution, then the solution must be unique. 

Theorem 4.1: Let  be a convex function with continuous first partial derivatives on 

some open set containing the convex set , then any critical point of  is a global minimizer of .                                                                                 

Proof                                                                                                                                                                               

Suppose that  is critical point of  then 

  

Let , so that 
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 ,     (by Tailor theorem)                                                            (4.1) 

But  is convex on  

 

                                                        

Hence,  is a global minimizer of . 

The theorem below shows that if  is a strictly convex and admits a solution, then the solution must 

be unique. 

Theorem 4:2 Let   be a function. If  is strictly convex on  then  

(1)  has at most one minimizer, that is if the minimizer exists, then it is unique. 

(2) any local minimizer of a convex function  is also a global minimizer. 

Proof  

Let  and  be two different minimizers of  and let . Because of the strict convexity of  

and the fact that  

,  

We have  

, 

This is contradiction and therefore,  

 . 

Proof of (2) 

Suppose that  is a local minimize of  in . Then there is a positive number  such that 

. 

Given any , we show that 

 . 

Chose  so small that  

 

Then, by convexity of , we have 
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. 

Subtracting  from both sides of the proceeding, inequality,  

We have 

. 

  

.                    

This implies that  is a global minimizer of .                

CONVEX AND INEQUALITY-CONSTRAINTS 

The main result here is the Theorem of Kuhn-Tucker, (KKT). In this result the first order conditions 

of the are both necessary and sufficient to identify optima of convex inequality-constrained 

optimization problems. This is possible if a mild regularity condition is met. 

Theorem 5.1 (The Theorem of Kuhn-Tucker): Let  be a  function mapping  into , where 

 is open and convex.  Let  also be convex/concave  function, for, . 

Suppose there exist some  such that the Slater’s condition 

m 

Then,  maximizes  over 

  

If and only if there exists  such that the Kuhn-Tucker first order conditions hold: 

                                                                    

                                                                                                                                  

Remark: Slater’s condition is used only in the proof that,  and  are necessary at 

an optimum. It is not necessary in proof of sufficiency. 

APPLICATION 

A bock Industry is producing two different types of block 9 inches and 6 inches blocks 

From the industry, we discovered the following about their revenue. The sells of the product are in 

naira 

(i) They sell in a defined bundle for each product 

(ii) The price for product A (9 inches) =150 

(iii) The price for product B (6 inches)  



www.idosr.org                                                                                   Efor and Nshi 

115 

                                            IDOSR JOURNAL OF APPLIED SCIENCES 2(2) 106-116, 2017.  

 

(iv) The demand for   , and    

The revenue function is given by:                                                                                                                                  

Max  

 The problem is modeled as follows: 

Max ,                                                                                            

S.t                                                                                                                                           

   

The revenue problem is a convex problem, , is strictly convex  and since it is has inequality 

constraint, we apply the  KKT conditions in the problem above,  

=   

=  

=  

 

 

 

 ,  

Since, we have two complementary slackness, we have four cases 

Case1.                                                                                                                                                                  

  

  

, 

( ) = ( ) 

 is not feasible  

Case ii   

. Not feasible 
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Case iii 

,  

. 

The revenue will be optimized at  

( ) =( )    

  Hence, ( ) is a global solution          

SUMMARY/CONCLUSION 

So far, the paper has discussed some implications of convexity such as continuity and 

differentiability and the result have showed that a convex function is continuous and differentiable 

everywhere on the interior of its domain. Characterizations of convexity in terms of first and 

second derivatives have been discussed.  The role of convexity to optimization problems is very 

vital in the sense that, if the optimization problem is convex, then any critical point of  is a global 

minimizer of  and if  is strictly convex and admits a solution, then the solution must be unique. 

Karush-Kuhn Tucker condition was applied to a small scale revenue problem.   
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